论文标题
球面对称物质通过站立冲击到紧凑的物体上:Schwarzschild几何形状的一般相对性的影响
Spherically Symmetric Accretion onto a Compact Object through a Standing Shock: The Effects of General Relativity in the Schwarzschild Geometry
论文作者
论文摘要
冲击波通过巨大的恒星的信封,产生了核心溢出的超新星,在那里,冲击波最初是从恒星核心崩溃期间形成的中子恒星的`弹跳''发射的。然而,对核心折叠超新星的数值研究并没有成功爆炸,而是发现这种冲击倾向于在小半径($ \ Lessim $ 10中子星形半径)处``失速'',并且通过站立震动通过站立震动积聚到中心物体上。在这里,我们提出了通过停滞的冲击物积聚到紧凑型物体上的震动流体的密度,压力和速度的绝热溶液,我们包括Schwarzschild量的一般相对性的影响。与以前在牛顿限制中进行的作品类似,我们发现气体``沉降''内部与停滞的冲击。在这里分析的相对论方案中,渐近性在施瓦茨柴尔德半径附近接近零。如果紧凑物体的半径不在其事件范围之外,例如中子恒星,这些溶液可以代表材料表面上的积聚。我们还讨论了这些解决方案在发生核心崩溃事件后,这些解决方案大致将气体积聚到新形成的黑洞上的可能性。我们的发现和解决方案在弱和失败的超新星中尤其重要,在弱和失败的超新星中,冲击被推到小半径上,相对论效应很大。
A core-collapse supernova is generated by the passage of a shockwave through the envelope of a massive star, where the shock wave is initially launched from the ``bounce'' of the neutron star formed during the collapse of the stellar core. Instead of successfully exploding the star, however, numerical investigations of core-collapse supernovae find that this shock tends to ``stall'' at small radii ($\lesssim$ 10 neutron star radii), with stellar material accreting onto the central object through the standing shock. Here, we present time-steady, adiabatic solutions for the density, pressure, and velocity of the shocked fluid that accretes onto the compact object through the stalled shock, and we include the effects of general relativity in the Schwarzschild metric. Similar to previous works that were carried out in the Newtonian limit, we find that the gas ``settles'' interior to the stalled shock; in the relativistic regime analyzed here, the velocity asymptotically approaches zero near the Schwarzschild radius. These solutions can represent accretion onto a material surface if the radius of the compact object is outside of its event horizon, such as a neutron star; we also discuss the possibility that these solutions can approximately represent the accretion of gas onto a newly formed black hole following a core-collapse event. Our findings and solutions are particularly relevant in weak and failed supernovae, where the shock is pushed to small radii and relativistic effects are large.