论文标题
关于芦苇毛刺代码的一些代数问题
Some Algebraic Questions about the Reed-Muller Code
论文作者
论文摘要
令$ r_q(r,n)$表示$ r $ th订单reed-muller长度$ q^n $ over $ \ bbb f_q $。我们考虑有关REED-MULLER代码的两个代数问题。令$ h_q(r,n)= r_q(r,n)/r_q(r-1,n)$。 (1)当$ q = 2 $时,众所周知,$ \ text {gl}(n,\ bbb f_2)$在$ h_2(r,n)$和$ h_2(r',n)$上的动作之间存在“双重性”。对于一般$ Q $,结果是错误的。但是,我们发现当$ q $是prime或$ r <\ text {char} \,\ bbb f_q $时,仍然存在稍微修改的双重性语句。 (2)令$ \ MATHCAL F(\ bbb f_q^n,\ bbb f_q)$表示所有功能的$ \ bbb f_q $ -algebra,从$ \ bbb f_q^n $到$ \ \ \ bbb f_q $。众所周知,当$ q $是素数时,芦苇 - 穆勒代码$ \ {0 \} = r_q(-1,n)\ subset r_q(0,n)\ subset \ cdots \ cdots \ cdots \ subset r_q(n(q-1),n(q-1),n),n),n)= \ nathcal f(\ bb f_q^n,\ bb bb bb f_q^n,\ bb bb f_q) $ \ text {agl}(n,\ bbb f_q)$ - $ \ mathcal f(\ bbb f_q^n,\ bbb f_q)$的子模块。特别是,$ h_q(r,n)$是一种不可约的$ \ text {gl}(n,\ bbb f_q)$ - $ q $是素数时的模块。对于一般的$ Q $,$ h_q(r,n)$不一定不可约。我们确定其所有子模型及其组成系列中的因素。 $ h_q(r,n)$组成系列的因素为$ \ bbb f_q $上的$ \ text {gl}(n,\ bbb f_q)$提供明确的不可约为表示。
Let $R_q(r,n)$ denote the $r$th order Reed-Muller code of length $q^n$ over $\Bbb F_q$. We consider two algebraic questions about the Reed-Muller code. Let $H_q(r,n)=R_q(r,n)/R_q(r-1,n)$. (1) When $q=2$, it is known that there is a "duality" between the actions of $\text{GL}(n,\Bbb F_2)$ on $H_2(r,n)$ and on $H_2(r',n)$, where $r+r'=n$. The result is false for a general $q$. However, we find that a slightly modified duality statement still holds when $q$ is a prime or $r<\text{char}\,\Bbb F_q$. (2) Let $\mathcal F(\Bbb F_q^n,\Bbb F_q)$ denote the $\Bbb F_q$-algebra of all functions from $\Bbb F_q^n$ to $\Bbb F_q$. It is known that when $q$ is a prime, the Reed-Muller codes $\{0\}=R_q(-1,n)\subset R_q(0,n)\subset\cdots\subset R_q(n(q-1),n)=\mathcal F(\Bbb F_q^n,\Bbb F_q)$ are the only $\text{AGL}(n,\Bbb F_q)$-submodules of $\mathcal F(\Bbb F_q^n,\Bbb F_q)$. In particular, $H_q(r,n)$ is an irreducible $\text{GL}(n,\Bbb F_q)$-module when $q$ is a prime. For a general $q$, $H_q(r,n)$ is not necessarily irreducible. We determine all its submodules and the factors in its composition series. The factors of the composition series of $H_q(r,n)$ provide an explicit family of irreducible representations of $\text{GL}(n,\Bbb F_q)$ over $\Bbb F_q$.