论文标题
通过视觉和地形探测安全腿机器人导航的遍历性分析
Traversability analysis with vision and terrain probing for safe legged robot navigation
论文作者
论文摘要
这项研究受到人类行为的启发,提出了探测策略的使用,并将其整合到遍布性分析框架中,以解决未知的粗糙地形上的安全导航。我们的框架将可折叠信息整合到我们现有的遍历性分析中,因为仅视力和几何信息可能会被不可预测的非刚性地形(例如柔软的土壤,灌木丛或水坑)误导。通过新的遍历性分析框架,我们的机器人对无法预测的地形进行了更全面的评估,这对于其在室外环境中的安全至关重要。该管道首先使用RGB-D摄像头确定地形的几何和语义属性,并在可疑地形上探测位置。使用力传感器对这些区域进行探测,以确定机器人在其上面时崩溃的风险。该风险被称为可折叠性指标,该指标估计了不可预测的区域的地面可折叠性。此后,将可折叠性度量与几何和语义空间数据一起被合并并分析,以产生全球和局部穿术网格图。这些遍历性网格地图告诉机器人是否可以安全地跨越地图的不同区域。然后使用网格图来生成机器人安全导航到其目标的最佳路径。在模拟和现实世界实验中,我们在四足动物机器人上成功验证了我们的方法。
Inspired by human behavior when traveling over unknown terrain, this study proposes the use of probing strategies and integrates them into a traversability analysis framework to address safe navigation on unknown rough terrain. Our framework integrates collapsibility information into our existing traversability analysis, as vision and geometric information alone could be misled by unpredictable non-rigid terrains such as soft soil, bush area, or water puddles. With the new traversability analysis framework, our robot has a more comprehensive assessment of unpredictable terrain, which is critical for its safety in outdoor environments. The pipeline first identifies the terrain's geometric and semantic properties using an RGB-D camera and desired probing locations on questionable terrains. These regions are probed using a force sensor to determine the risk of terrain collapsing when the robot steps over it. This risk is formulated as a collapsibility metric, which estimates an unpredictable region's ground collapsibility. Thereafter, the collapsibility metric, together with geometric and semantic spatial data, is combined and analyzed to produce global and local traversability grid maps. These traversability grid maps tell the robot whether it is safe to step over different regions of the map. The grid maps are then utilized to generate optimal paths for the robot to safely navigate to its goal. Our approach has been successfully verified on a quadrupedal robot in both simulation and real-world experiments.