论文标题

两个第二秒的steenrod正方形,用于奇数Khovanov同源性

Two second Steenrod squares for odd Khovanov homology

论文作者

Schuetz, Dirk

论文摘要

最近,Sarkar-Scaduto-Stoffregen构建了一种稳定的同型类型,用于奇数Khovanov同源性,因此使用$ \ Mathbb {Z}/2 \ Mathbb {Z} $系数获得了Steenrod Algebra在Khovanov同源性上的作用。由他们的构造动机,我们提出了一种计算第二个steenrod广场的方法。我们的构造不是唯一的,但是我们可以证明它是一个链接不变的,它可以通过$ \ mathbb {z}/2 \ mathbb {z} $系数的rasmussen $ s $ invariant进行改进。我们希望它与Sarkar-Scaduto-Stoffregen Construction产生的第二个Steenrod广场有关。

Recently, Sarkar-Scaduto-Stoffregen constructed a stable homotopy type for odd Khovanov homology, hence obtaining an action of the Steenrod algebra on Khovanov homology with $\mathbb{Z}/2\mathbb{Z}$ coefficients. Motivated by their construction we propose a way to compute the second Steenrod square. Our construction is not unique, but we can show it to be a link invariant which gives rise to a refinement of the Rasmussen $s$-invariant with $\mathbb{Z}/2\mathbb{Z}$ coefficients. We expect it to be related to the second Steenrod square arising from the Sarkar-Scaduto-Stoffregen construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源