论文标题

空间预测后处理:最大和平滑的方法

Spatial forecast postprocessing: The Max-and-Smooth approach

论文作者

Siegert, Stefan, Hooper, Ben, Lovegrove, Joshua, Thomson, Tyler, Hrafnkelsson, Birgir

论文摘要

由于模型假设和计算近似值,数值天气预报可能会出现系统错误。统计后处理是纠正此类偏见的一种统计方法。统计后处理模型从数值预测模型中获取输入数据,并输出现实世界观察的参数预测分布,并从过去的预测观察对中学到了模型参数。在本文中,我们开发并讨论了用于栅格数据后处理的方法。我们表明,通过空间先验的贝叶斯分层建模可以改善对空间网格上后处理参数的估计。我们使用“最大平滑”方法[Hrafnkelsson等,2021],以两步分为两个步骤近似贝叶斯的推断。首先,我们计算单个网格点的后处理参数的最大似然估计(MLE)。其次,我们使用具有空间先验的测量误差模型来平滑MLE。我们的方法为Kharin等人的参数平滑方法提供了理论基础。 [2017],并简化并概括了Moeller等人的贝叶斯分层建模方法。 [2015]。提出了最大和平滑的新推导。该方法适用于任意后处理模型,如模型输出统计,逻辑回归和非均匀的高斯回归所示。我们报告了预测准确性,校准和概率技能的一致改善,以促进温度和降水预测的后处理。

Numerical weather forecasts can exhibit systematic errors due to simplifying model assumptions and computational approximations. Statistical postprocessing is a statistical approach to correcting such biases. A statistical postprocessing model takes input data from a numerical forecast model, and outputs a parametric predictive distribution of a real-world observation, with model parameters learned from past forecast-observation pairs. In this paper we develop and discuss methods for postprocessing of gridded data. We show that estimates of postprocessing parameters on a spatial grid can be improved by Bayesian hierarchical modelling with spatial priors. We use the "Max-and-Smooth" approach [Hrafnkelsson et al., 2021] to approximate a fully Bayesian inference in two steps. First we calculate maximum-likelihood estimates (MLEs) of postprocessing parameters at individual grid points. Second we smooth the MLEs using a measurement error model with a spatial prior. Our approach provides the theoretical basis for the parameter smoothing approach by Kharin et al. [2017], and simplifies and generalises the Bayesian hierarchical modelling approach by Moeller et al. [2015]. A new derivation of Max-and-Smooth is presented. The method is applicable to arbitrary postprocessing models, as illustrated on Model Output Statistics, Logistic Regression, and Nonhomogeneous Gaussian Regression. We report consistent improvements in forecast accuracy, calibration, and probabilistic skill in postprocessing of temperature and precipitation forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源