论文标题
焦点驱动的对比度学习医学问题摘要
Focus-Driven Contrastive Learniang for Medical Question Summarization
论文作者
论文摘要
自动医疗问题摘要可以极大地帮助系统了解消费者健康问题并检索正确的答案。基于最大似然估计(MLE)的SEQ2SEQ模型已在此任务中应用,这面临两个一般问题:该模型无法捕获良好的问题焦点,而传统的MLE策略则缺乏了解句子级语义的能力。为了减轻这些问题,我们提出了一个新颖的问题焦点驱动的对比学习框架(QFCL)。特别是,我们提出了一种简单有效的方法来基于问题的重点生成硬性样本,并利用编码器和解码器的对比度学习以获得更好的句子级别表示。在三个医疗基准数据集上,我们提出的模型可实现新的最新结果,并在三个数据集的基线BART模型上获得了5.33、12.85和3.81点的性能增益。进一步的人类判断和详细的分析证明,我们的QFCL模型可以学习更好的句子表示,具有区分不同句子含义的能力,并通过捕获问题重点来产生高质量的摘要。
Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers. The Seq2Seq model based on maximum likelihood estimation (MLE) has been applied in this task, which faces two general problems: the model can not capture well question focus and and the traditional MLE strategy lacks the ability to understand sentence-level semantics. To alleviate these problems, we propose a novel question focus-driven contrastive learning framework (QFCL). Specially, we propose an easy and effective approach to generate hard negative samples based on the question focus, and exploit contrastive learning at both encoder and decoder to obtain better sentence level representations. On three medical benchmark datasets, our proposed model achieves new state-of-the-art results, and obtains a performance gain of 5.33, 12.85 and 3.81 points over the baseline BART model on three datasets respectively. Further human judgement and detailed analysis prove that our QFCL model learns better sentence representations with the ability to distinguish different sentence meanings, and generates high-quality summaries by capturing question focus.