论文标题
(Gorenstein)回忆中的淤泥模块
(Gorenstein) silting modules in recollements
论文作者
论文摘要
在论文中,我们关注淤泥和雪橇和戈伦斯坦的组合特性,这被称为戈伦斯坦淤积,其中所使用的主要工具是模块类别和张量产品的回忆。对于一个环A及其基本理想j,我们显示A/J模块t是silting a模块时,并且仅当t是silting a/j模块时。对于有限的尺寸k-Algebras,带有k A场,我们表明Silting模块的张量仍然是淤积的。我们还表明,(部分)Gorenstein Silting特性可以用Noetherian环的模块类别的回忆粘合。结果,我们用所涉及的环的上三角基质戈伦斯坦环的戈伦斯坦雪橇模块粘合。
In the paper, we focus on the silting properties and the combinatorial properties of silting and Gorenstein, which is called Gorenstein silting, where the main tools used are recollements of module categories and tensor products. For a ring A and its idempotent ideal J, we show that an A/J-module T is a silting A-module if and only if T is a silting A/J-module. For the finite dimensional k-algebras, with k a field, we show that the tensor products of silting modules are still silting. We also show that the (partial) Gorenstein silting properties can be glued by the recollements of module categories of Noetherian rings. As a consequence, we glue the Gorenstein silting modules of an upper triangular matrix Gorenstein ring by those of the involved rings.