论文标题

$ p $ - 亚种微分方程家庭中的单片表示

Monodromy representations of $p$-adic differential equations in families

论文作者

Kedlaya, Kiran S.

论文摘要

我们得出了在混合特性非章节上的环上的普通微分方程的局部单构定理的相对版本,并在$ p $ addic的同胞和$ p $ - adic hodge理论中提供了多个应用。其中包括简化的证明过度会议$ f $ isocrystals的半简化定理,这是Berger的定理的相对版本,即De Rham表示可能是可以半介绍的,并且是Drinfeld风格的局部单型原理的多变量版本。

We derive a relative version of the local monodromy theorem for ordinary differential equations on an annulus over a mixed-characteristic nonarchimedean field, and give several applications in $p$-adic cohomology and $p$-adic Hodge theory. These include a simplified proof of the semistable reduction theorem for overconvergent $F$-isocrystals, a relative version of Berger's theorem that de Rham representations are potentially semistable, and a multivariate version of the local monodromy theorem in the style of Drinfeld's lemma on fundamental groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源