论文标题
Spritz闪闪发光:模拟CO和[CII]亮度
Spritz is sparkling: simulated CO and [CII] luminosities
论文作者
论文摘要
我们使用j = 0至j = 24的CO线的[CII]线的光度函数的新预测以及使用simulation simulation simulation simulation simulations sim sim sim a n j = 0至j = 24的CO线和分子气体质量密度到Z = 10的分子气体质量密度。我们将最先进的现象学模拟Spritz更新为包括CO($ J \ leq24 $)和[CII]线灯光。这是使用不同的经验和理论关系进行的,以将总红外光度(或恒星形成率)转换为[CII]或CO光度。与文献中可用的大量观测值进行了比较,对所得线的光度函数进行了比较。然后,我们使用了派生的CO和[CII]线仪表来估计分子气体质量密度并将其与可用观测值进行比较。此处介绍的CO和[CII]光度函数与所有可用观察结果一致。特别是,[CII]的最佳结果是直接从恒星形成速率中得出[CII]光度的,但考虑到这种关系对气体金属性的依赖性。对于所有CO亮度函数,数据偏爱的估计值将根据不同的关系而得出,这取决于主导每个星系的电离机制,即恒星形成或主动的银河系核,此外,并从[cii] Lumininitusy中直接得出了$ j \ geq4 $ co。但是,需要进一步的数据才能完全区分模型。最后,通过使用[CII]亮度转换为H2质量,使用[CII] -H2转换〜130 $ \ rm m _ {\ odot}/{\ rm L} _ {\ odot} $,与分子气体质量密度观察的最佳一致性是通过将[CII]亮度转换为H2质量的最佳一致性。所有的线亮度功能,用于计划和解释未来的观察,都可以公开使用。
We present a new prediction of the luminosity functions of the [CII] line at 158 $μ$m, of the CO lines from J=0 to J=24, and of the molecular gas mass density up to z=10, using the Spectro-Photometric Realisations of Infrared-selected Targets at all-z (SPRITZ) simulation (Bisigello et al. 2021). We update the state-of-the-art phenomenological simulation SPRITZ to include both the CO ($J\leq24$) and [CII] line luminosities. This has been performed using different empirical and theoretical relations to convert the total infrared luminosity (or star formation rate) to [CII] or CO luminosity. The resulting line luminosity functions have been compared for validation with a large set of observations available in the literature. We then used the derived CO and [CII] line luminosities to estimate the molecular gas mass density and compare it with available observations. The CO and [CII] luminosity functions presented here are well in agreement with all the available observations. In particular, the best results for [CII] are obtained deriving the [CII] luminosity directly from the star formation rate, but considering a dependence of this relation on the gas metallicity. For all the CO luminosity functions, the estimates favoured by the data are derived considering different relations, depending on the ionisation mechanism dominating each galaxy, i.e. star formation or active galactic nuclei, and, moreover, deriving the $J\geq4$ CO lines directly from the [CII] luminosity. However, further data are necessary to fully discriminate between models. Finally, the best agreement with observations of the molecular gas mass density are derived by converting the [CII] luminosity to H2 mass, using a [CII]-to-H2 conversion ~130 $\rm M_{\odot}/{\rm L}_{\odot}$. All the line luminosity functions, useful for planning and interpreting future observations, are made publicly available.