论文标题
(2+1)中的光传播 - 维电动力学:线性本构定律的情况
Light propagation in (2+1)-dimensional electrodynamics: the case of linear constitutive laws
论文作者
论文摘要
在本文中,我们将注意力转向三维电动力学的光传播。更具体地说,我们研究了光线在生活在三维环境时空中的连续双维假设培养基中的行为。依靠完全协变量的方法,我们假设该介质具有局部和线性响应张量,该响应张量将场强度映射到激励中。在几何光学限制中,我们获取相应的菲涅尔方程,并使用代数几何形状的众所周知的结果,我们得出了有效的光学指标。
In this paper, we turn our attention to light propagation in three-dimensional electrodynamics. More specifically, we investigate the behavior of light rays in a continuous bi-dimensional hypothetical medium living in a three-dimensional ambient spacetime. Relying on a fully covariant approach, we assume that the medium is endowed with a local and linear response tensor which maps field strengths into excitations. In the geometric optics limit, we then obtain the corresponding Fresnel equation and, using well-known results from algebraic geometry, we derive the effective optical metric.