论文标题
结构保存图表表示
Structure-Preserving Graph Representation Learning
论文作者
论文摘要
尽管图表学习(GRL)取得了重大进展,但要以足够的方式提取和嵌入丰富的拓扑结构和特征信息仍然是一个挑战。大多数现有方法都集中在本地结构上,并且无法完全融合全球拓扑结构。为此,我们提出了一种新颖的结构保护图表示学习(SPGRL)方法,以完全捕获图的结构信息。具体而言,为了减少原始图的不确定性和错误信息,我们通过k-nearteb neighber方法构建了一个特征图作为互补视图。该特征图可用于在节点级别上对比以捕获局部关系。此外,我们通过最大化整个图和特征嵌入的互信息(MI)来保留全局拓扑结构信息,从理论上讲,该信息可以简化为交换功能的特征嵌入以及原始图以重建本身。广泛的实验表明,我们的方法在半监督的节点分类任务上具有相当出色的性能,并且在图形结构或节点特征上噪声扰动下的鲁棒性出色。
Though graph representation learning (GRL) has made significant progress, it is still a challenge to extract and embed the rich topological structure and feature information in an adequate way. Most existing methods focus on local structure and fail to fully incorporate the global topological structure. To this end, we propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method, to fully capture the structure information of graphs. Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method. The feature graph can be used to contrast at node-level to capture the local relation. Besides, we retain the global topological structure information by maximizing the mutual information (MI) of the whole graph and feature embeddings, which is theoretically reduced to exchanging the feature embeddings of the feature and the original graphs to reconstruct themselves. Extensive experiments show that our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.