论文标题

关于保险定价歧视和公平性的讨论

A Discussion of Discrimination and Fairness in Insurance Pricing

论文作者

Lindholm, Mathias, Richman, Ronald, Tsanakas, Andreas, Wüthrich, Mario V.

论文摘要

间接歧视是算法模型中主要关注的问题。在保险定价中尤其是这种情况,在不允许使用保护的保单持有人特征进行保险定价的情况下。简单地忽略受保护的保单持有人的信息不是一个适当的解决方案,因为这仍然允许从非保护特征中推断出受保护特征的可能性。这导致所谓的代理或间接歧视。尽管代理歧视与机器学习中的集体公平概念在质量上有所不同,但提出了这些群体公平概念,以“平滑”受保护特征在计算保险价格中的影响。本说明的目的是根据保险定价分享有关团体公平概念的一些想法,并讨论其含义。我们提出了一个没有替代歧视的统计模型,因此从保险定价的角度来看,没有问题。但是,我们发现该统计模型中的规范价格无法满足三个最受欢迎的集体公正公理中的任何一个。这似乎令人困惑,我们欢迎对我们的例子以及这些集体公正公理在非歧视性保险定价的有用性。

Indirect discrimination is an issue of major concern in algorithmic models. This is particularly the case in insurance pricing where protected policyholder characteristics are not allowed to be used for insurance pricing. Simply disregarding protected policyholder information is not an appropriate solution because this still allows for the possibility of inferring the protected characteristics from the non-protected ones. This leads to so-called proxy or indirect discrimination. Though proxy discrimination is qualitatively different from the group fairness concepts in machine learning, these group fairness concepts are proposed to 'smooth out' the impact of protected characteristics in the calculation of insurance prices. The purpose of this note is to share some thoughts about group fairness concepts in the light of insurance pricing and to discuss their implications. We present a statistical model that is free of proxy discrimination, thus, unproblematic from an insurance pricing point of view. However, we find that the canonical price in this statistical model does not satisfy any of the three most popular group fairness axioms. This seems puzzling and we welcome feedback on our example and on the usefulness of these group fairness axioms for non-discriminatory insurance pricing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源