论文标题

使用散射参数的液压缸的深度学习位置检测

Deep Learning-Based Position Detection for Hydraulic Cylinders Using Scattering Parameters

论文作者

Xin, Chen, Motz, Thomas, Fuhl, Wolfgang, Hartel, Andreas, Kasneci, Enkelejda

论文摘要

液压缸活塞的位置检测对于众多工业自动化应用至关重要。一种典型的传统方法是在圆柱结构中激发电磁波,并根据传感器测量的散射参数来分析求解活塞位置。这种方法的核心是一个物理模型,概述了测得的散射参数与靶向活塞位置之间的关系。但是,这种物理模型在准确性和适应性方面存在缺点,尤其是在极端条件下。为了解决这些局限性,我们建议以数据驱动的方式直接学习机器学习和基于深度学习的方法。结果,本文中的所有深度学习模型都一致地优于物理模型。我们进一步考虑基于领域知识的模型选择,并提供将模型性能与现实世界特征相结合的深入分析。具体而言,我们使用卷积神经网络(CNN)来发现相邻频率之间输入的局部相互作用,应用复杂值值的神经网络(CVNN)来利用电磁散射参数的复杂值性质,并引入一个新技术频率编码来添加加权频率信息,以将加权频率信息添加到模型输入中。这些技术的组合导致了我们表现最佳的模型,即具有频率编码的复杂价值的CNN,与传统的物理模型相比,频率编码的频率编码具有很大的提高,误差降低了1/12。

Position detection of hydraulic cylinder pistons is crucial for numerous industrial automation applications. A typical traditional method is to excite electromagnetic waves in the cylinder structure and analytically solve the piston position based on the scattering parameters measured by a sensor. The core of this approach is a physical model that outlines the relationship between the measured scattering parameters and the targeted piston position. However, this physical model has shortcomings in accuracy and adaptability, especially in extreme conditions. To address these limitations, we propose machine learning and deep learning-based methods to learn the relationship directly in a data-driven manner. As a result, all deep learning models in this paper consistently outperform the physical one by a large margin. We further deliberate on the choice of models based on domain knowledge and provide in-depth analyses combining model performance with real-world physical characteristics. Specifically, we use Convolutional Neural Network (CNN) to discover local interactions of input among adjacent frequencies, apply Complex-Valued Neural Network (CVNN) to exploit the complex-valued nature of electromagnetic scattering parameters, and introduce a novel technique named Frequency Encoding to add weighted frequency information to the model input. The combination of these techniques results in our best-performing model, a complex-valued CNN with Frequency Encoding, which exhibits substantial improvement in accuracy with an error reduction of 1/12 compared to the traditional physical model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源