论文标题
电网中基于排名的物理信息线路故障检测
Ranking-Based Physics-Informed Line Failure Detection in Power Grids
论文作者
论文摘要
气候变化增加了损害电力系统可靠性并导致多次设备故障的极端天气事件(风暴,大雨,野火)的数量。实时和准确检测潜在线路故障是减轻极端天气影响并激活紧急控制的第一步。功率平衡方程式非线性,极端事件中发电的不确定性增加,并且缺乏电网可观察性会损害传统数据驱动的失败检测方法的效率。同时,基于神经网络的现代欺骗问题的机器学习方法需要大量数据来检测事故,尤其是在改变时间的环境中。本文提出了一个具有物理信息的线路故障检测器(场),该探测器利用网格拓扑信息来减少样本和时间复杂性并提高定位准确性。最后,我们说明了与最先进的方法相比,与各种测试案例相比,我们的方法的出色经验表现。
Climate change increases the number of extreme weather events (wind and snowstorms, heavy rains, wildfires) that compromise power system reliability and lead to multiple equipment failures. Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls. Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods. At the same time, modern problem-oblivious machine learning methods based on neural networks require a large amount of data to detect an accident, especially in a time-changing environment. This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy. Finally, we illustrate the superior empirical performance of our approach compared to state-of-the-art methods over various test cases.