论文标题

机器学习后的积分

Machine Learning Post-Minkowskian Integrals

论文作者

Jinno, Ryusuke, Kälin, Gregor, Liu, Zhengwen, Rubira, Henrique

论文摘要

我们研究了Feynman Loop积分的数值评估的神经网络框架,该框架是对仪表和重力理论中物理可观察物的扰动计算的基本构建块。我们表明,这种机器学习方法改善了与传统算法相比,用于高精度评估蒙特卡洛算法的收敛性。特别是,我们使用神经网络来改善重要性抽样。对于一组代表性积分,出现在一般相对论的紧凑型二进制系统的保守动力学计算中,我们在基于神经网络采样的基于神经网络采样的集成仪I-flow之间进行了定量比较。

We study a neural network framework for the numerical evaluation of Feynman loop integrals that are fundamental building blocks for perturbative computations of physical observables in gauge and gravity theories. We show that such a machine learning approach improves the convergence of the Monte Carlo algorithm for high-precision evaluation of multi-dimensional integrals compared to traditional algorithms. In particular, we use a neural network to improve the importance sampling. For a set of representative integrals appearing in the computation of the conservative dynamics for a compact binary system in General Relativity, we perform a quantitative comparison between the Monte Carlo integrators VEGAS and i-flow, an integrator based on neural network sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源