论文标题
背靠背:重新发现骨干在域概括中的作用
Back-to-Bones: Rediscovering the Role of Backbones in Domain Generalization
论文作者
论文摘要
域的概括(DG)研究了深度学习模型推广到训练分布的能力。在过去的十年中,文献已经大量填充了培训方法,这些方法声称获得更抽象和强大的数据表示以应对域的转移。最近的研究为DG提供了可再现的基准,指出了天真的经验风险最小化(ERM)对现有算法的有效性。然而,研究人员坚持使用相同的过时的特征提取器,并且尚未对不同的骨架的影响。在本文中,我们回到骨干中,提出了对其内在概括能力的全面分析,到目前为止,研究界已经忽略了这些能力。我们评估了各种特征提取器,从标准残差解决方案到基于变压器的架构,发现大规模的单域分类精度和DG功能之间的线性相关性。我们广泛的实验表明,通过采用竞争性骨干与有效的数据增强结合使用,普通ERM的表现优于最近的DG解决方案,并实现了最先进的准确性。此外,我们的其他定性研究表明,新型的骨干提供了与同类样本更相似的表示,从而将特征空间中的不同域分开。这种概括功能的增强功能使DG算法的边缘空间为边缘空间。它暗示了一个新的范式来调查该问题,将骨干放在聚光灯下,并鼓励在其顶部开发一致的算法。该代码可在https://github.com/pic4ser/back-to-to-bones上找到。
Domain Generalization (DG) studies the capability of a deep learning model to generalize to out-of-training distributions. In the last decade, literature has been massively filled with training methodologies that claim to obtain more abstract and robust data representations to tackle domain shifts. Recent research has provided a reproducible benchmark for DG, pointing out the effectiveness of naive empirical risk minimization (ERM) over existing algorithms. Nevertheless, researchers persist in using the same outdated feature extractors, and no attention has been given to the effects of different backbones yet. In this paper, we start back to the backbones proposing a comprehensive analysis of their intrinsic generalization capabilities, which so far have been ignored by the research community. We evaluate a wide variety of feature extractors, from standard residual solutions to transformer-based architectures, finding an evident linear correlation between large-scale single-domain classification accuracy and DG capability. Our extensive experimentation shows that by adopting competitive backbones in conjunction with effective data augmentation, plain ERM outperforms recent DG solutions and achieves state-of-the-art accuracy. Moreover, our additional qualitative studies reveal that novel backbones give more similar representations to same-class samples, separating different domains in the feature space. This boost in generalization capabilities leaves marginal room for DG algorithms. It suggests a new paradigm for investigating the problem, placing backbones in the spotlight and encouraging the development of consistent algorithms on top of them. The code is available at https://github.com/PIC4SeR/Back-to-Bones.