论文标题
与GNN援助和对比度学习的药丸处方匹配的新颖方法
A Novel Approach for Pill-Prescription Matching with GNN Assistance and Contrastive Learning
论文作者
论文摘要
误入药物是可能导致患者造成不可预测的后果的风险之一。为了减轻这种风险,我们开发了一个自动系统,该系统可以正确识别移动图像中的药丸的处方。具体而言,我们定义了所谓的药丸处方匹配任务,该任务试图匹配处方药中药丸名称所拍摄的药丸的图像。然后,我们提出了PIMA,这是一种使用图神经网络(GNN)和对比度学习来解决目标问题的新方法。特别是,GNN用于学习处方文本框之间的空间相关性,从而突出显示带有药丸名称的文本框。此外,还采用对比度学习来促进药丸名称的文本表示与药丸图像的视觉表示之间的跨模式相似性的建模。我们进行了广泛的实验,并证明了PIMA在我们构建的药丸和处方图像的现实数据集上优于基线模型。具体而言,与其他基线相比,PIMA的准确性从19.09%提高到46.95%。我们认为,我们的工作可以为建立新的临床应用并改善药物安全和患者护理提供新的机会。
Medication mistaking is one of the risks that can result in unpredictable consequences for patients. To mitigate this risk, we develop an automatic system that correctly identifies pill-prescription from mobile images. Specifically, we define a so-called pill-prescription matching task, which attempts to match the images of the pills taken with the pills' names in the prescription. We then propose PIMA, a novel approach using Graph Neural Network (GNN) and contrastive learning to address the targeted problem. In particular, GNN is used to learn the spatial correlation between the text boxes in the prescription and thereby highlight the text boxes carrying the pill names. In addition, contrastive learning is employed to facilitate the modeling of cross-modal similarity between textual representations of pill names and visual representations of pill images. We conducted extensive experiments and demonstrated that PIMA outperforms baseline models on a real-world dataset of pill and prescription images that we constructed. Specifically, PIMA improves the accuracy from 19.09% to 46.95% compared to other baselines. We believe our work can open up new opportunities to build new clinical applications and improve medication safety and patient care.