论文标题
关于单一流动的时间变化的刚度特性
On rigidity properties of time-changes of unipotent flows
论文作者
论文摘要
我们研究了半神经线性群体的有限体积商的一能流动的时间变化,从而概括了Ratner对肉鸡流的时间变化的先前工作。单功能流的时间变化之间的任何可测量的同构都会导致其图上支持的非平凡连接。在小组上的光谱差距下,我们显示以下刚度结果:在单参数重新统治亚组的作用下,该图的唯一限制点是微不足道的连接,或者同构是“仿射”,即,它是在与(非contimantsantantsantsants)构成(非conterations)cransplations transpersistantants transpersistants cransplations transce consects and intergebraic isomorplism clastists transis的。
We study time-changes of unipotent flows on finite volume quotients of semisimple linear groups, generalising previous work by Ratner on time-changes of horocycle flows. Any measurable isomorphism between time-changes of unipotent flows gives rise to a non-trivial joining supported on its graph. Under a spectral gap assumption on the groups, we show the following rigidity result: either the only limit point of this graph joining under the action of a one-parameter renormalising subgroup is the trivial joining, or the isomorphism is "affine", namely it is obtained composing an algebraic isomorphism with a (non-constant) translation along the centraliser.