论文标题

对应用于手术数据的最新基于深度学习的方法的全面调查

A comprehensive survey on recent deep learning-based methods applied to surgical data

论文作者

Ali, Mansoor, Pena, Rafael Martinez Garcia, Ruiz, Gilberto Ochoa, Ali, Sharib

论文摘要

微创手术是高度操作员,依赖于长时间的程序性时间,导致外科医生疲劳,并危害患者,例如对器官,感染,出血和麻醉并发症等患者。为了减轻这种风险,希望开发实时系统,可以为外科医生提供术中指导。例如,用于工具定位的自动化系统,工具(或组织)跟踪以及深度估计可以使人们能够清楚地了解手术场景,从而防止手术过程中的错误计算。在这项工作中,我们对最新基于机器学习的方法进行系统评价,包括手术工具定位,细分,跟踪和3D场景感知。此外,我们提供了广泛用于手术导航任务的公开基准数据集的详细概述。尽管最近的深度学习体系结构显示出令人鼓舞的结果,但仍然存在一些开放的研究问题,例如缺乏注释的数据集,外科手术场景中的伪影以及非纹理表面的存在,这些表面阻碍了解剖结构的3D重建。根据我们的全面审查,我们对当前差距和所需步骤进行了讨论,以改善手术技术的适应。

Minimally invasive surgery is highly operator dependant with a lengthy procedural time causing fatigue to surgeon and risks to patients such as injury to organs, infection, bleeding, and complications of anesthesia. To mitigate such risks, real-time systems are desired to be developed that can provide intra-operative guidance to surgeons. For example, an automated system for tool localization, tool (or tissue) tracking, and depth estimation can enable a clear understanding of surgical scenes preventing miscalculations during surgical procedures. In this work, we present a systematic review of recent machine learning-based approaches including surgical tool localization, segmentation, tracking, and 3D scene perception. Furthermore, we provide a detailed overview of publicly available benchmark datasets widely used for surgical navigation tasks. While recent deep learning architectures have shown promising results, there are still several open research problems such as a lack of annotated datasets, the presence of artifacts in surgical scenes, and non-textured surfaces that hinder 3D reconstruction of the anatomical structures. Based on our comprehensive review, we present a discussion on current gaps and needed steps to improve the adaptation of technology in surgery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源