论文标题

类型激活图的可视化以解释网络数据包捕获的AI分类

Visualization Of Class Activation Maps To Explain AI Classification Of Network Packet Captures

论文作者

Cherepanov, Igor, Ulmer, Alex, Joewono, Jonathan Geraldi, Kohlhammer, Jörn

论文摘要

由于当今网络和应用程序的快速增长,互联网流量的分类变得越来越重要。连接数量和我们网络中新应用程序的添加会导致大量日志数据,并使专家搜索常见模式变得复杂。在特定类别的应用程序中找到此类模式对于满足网络分析中的各种要求是必要的。深度学习方法可以从单个系统中的数据中提供特征提取和分类。但是,这些网络非常复杂,被用作黑框模型,它削弱了专家对分类的信任。此外,通过将它们用作黑色框,尽管其表现出色,但仍无法从模型预测中获得新知识。因此,分类的解释性至关重要。除了增加信任外,该解释还可以用于模型评估,从数据中获得新的见解并改善模型。在本文中,我们提出了一个视觉交互式工具,该工具将网络数据的分类与解释技术结合在一起,以在专家,算法和数据之间形成接口。

The classification of internet traffic has become increasingly important due to the rapid growth of today's networks and applications. The number of connections and the addition of new applications in our networks causes a vast amount of log data and complicates the search for common patterns by experts. Finding such patterns among specific classes of applications is necessary to fulfill various requirements in network analytics. Deep learning methods provide both feature extraction and classification from data in a single system. However, these networks are very complex and are used as black-box models, which weakens the experts' trust in the classifications. Moreover, by using them as a black-box, new knowledge cannot be obtained from the model predictions despite their excellent performance. Therefore, the explainability of the classifications is crucial. Besides increasing trust, the explanation can be used for model evaluation gaining new insights from the data and improving the model. In this paper, we present a visual interactive tool that combines the classification of network data with an explanation technique to form an interface between experts, algorithms, and data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源