论文标题
纳米多孔微流体约束中的溶作相变的时空编程
Spatio-temporal programming of lyotropic phase transition in nanoporous microfluidic confinements
论文作者
论文摘要
例如,由于纳米方面的选择性分子摄取,可以通过物理约束来驱动简单分子分为复杂阶段的自组装。尽管表面介导的组装在生命的进化中具有重要意义,但分子富集和组装的物理途径仍被忽略。在这里,我们使用溶解染色体液晶作为模型生物材料,限制在纳米多孔微流体环境中,我们研究由纳米多孔底物驱动的分子组装。我们证明,由于水分子的选择性渗透,纳米多孔聚二甲基硅氧烷(PDMS)表面驱动了各向同性相对于有序的列中的无序偏移,在等热条件下驱动了较高的柱状阶段。通过定制限制性的润湿性,表面与体积比和表面地形,我们可以通过高度的空间和时间控制来进行协同作用。使用时间元解体极化成像,定量图像处理和简单的数学模型的组合,我们分析了相变,并构造一个主图,以捕获表面润湿性和通道几何形状在可编程的溶裂相变的作用。固有的PDMS纳米质和限制横截面,加上施加的润湿性调节N-M相变的速率;而微流体的几何形状和嵌入形态可以在目标位置进行相变。我们利用N-M转变期间的新出现的远程顺序,以使嵌入式微型货车的弹性弹性运输促进了弹性的辅助转运,这表明了由可调相变的粒子操纵概念。我们的结果提出了一条可编程的物理途径,并提供了一种用于组装遗传成分,生物货物和最小合成细胞的新范式。
Self-assembly of simple molecules into complex phases can be driven by physical constraints, for instance, due to selective molecular uptake by nanoporous surfaces. Despite the significance of surface-mediated assembly in evolution of life, physical routes to molecular enrichment and assembly have remained overlooked. Here, using a lyotropic chromonic liquid crystal as model biological material, confined within nanoporous microfluidic environments, we study molecular assembly driven by nanoporous substrates. We demonstrate that nanoporous polydimethylsiloxane (PDMS) surfaces, due to selective permeation of water molecules, drive transition of disordered isotropic phase to ordered nematic, and higher order columnar phases under isothermal conditions. Synergistically, by tailoring the wettability, the surface-to-volume ratio, and surface topography of the confinements, we program the lyotropic phase transitions with a high degree of spatial and temporal control. Using a combination of timelapse polarized imaging, quantitative image processing, and a simple mathematical model, we analyze the phase transitions, and construct a master diagram capturing the role of surface wettability and channel geometry on programmable lyotropic phase transitions. Intrinsic PDMS nanoporosity and confinement cross-section, together with the imposed wettability regulate the rate of the N-M phase transition; whereas the microfluidic geometry and embedded topography enable phase transition at targeted locations. We harness the emergent long-range order during N-M transition to actuate elasto-advective transport of embedded micro-cargo, demonstrating particle manipulation concepts governed by tunable phase transitions. Our results present a programmable physical route to material assembly, and offer a new paradigm for assembling genetic components, biological cargo, and minimal synthetic cells.