论文标题
H型叶子上的局部不变和几何形状
Local Invariants and Geometry of the sub-Laplacian on H-type Foliations
论文作者
论文摘要
$ h $ -type Foliations $(\ Mathbb {M},\ Mathcal {h},g _ {\ Mathcal {h}}} $在用支撑物生成分布的框架的框架中研究,该框架是riemannian的几何形状的框架,该分布将分布定义为束向Fibers的束移动。将$ \ Mathbb {M} $与BOTT连接配置,我们考虑了标量曲率$κ_ {\ Mathcal {h}} $,以及从垂直分布中引起的新的本地不变$τ_ {\ Mathcal {V}} $。我们扩展了最新的结果,该结果涉及由于laaroussi而引起的Quaternion-Contact(QC-)歧管上的少量渐进式,我们表达了第二次热量在riemannian sub-riemannian的几何形式中,作为$κ_ {\ Mathcal {\ Mathcal {hh h} $ and and and and and and and and and c} $ {在riemannian几何形状中使用类似物对正常坐标的使用,该几何形状适应了$ h $ type叶的几何结构,这使我们可以将Korányi球的背包考虑到$ \ Mathbb {M} $。我们明确地在小半径的POPP体积的渐近膨胀中明确获得了前三个术语。最后,我们解决了一个问题,即$ \ mathbb {m} $是本地等距,作为其$ h $ type Tintent Group的次级歧管。
$H$-type foliations $(\mathbb{M},\mathcal{H},g_{\mathcal{H}})$ are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping $\mathbb{M}$ with the Bott connection we consider the scalar horizontal curvature $κ_{\mathcal{H}}$ as well as a new local invariant $τ_{\mathcal{V}}$ induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannanian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of $κ_{\mathcal{H}}$ and $τ_{\mathcal{V}}$. The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of $H$-type foliations allows us to consider the pull-back of Korányi balls to $\mathbb{M}$. We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when $\mathbb{M}$ is locally isometric as a sub-Riemannian manifold to its $H$-type tangent group.