论文标题
任何维度
Massless Scalars and Higher-Spin BMS in Any Dimension
论文作者
论文摘要
从任何时空维度的无限无穷大范围附近的无质量标量场的渐近运动学开始,我们建立了BMS组的Carrollian定义及其概括的两个更高旋转的扩展。第一个扩展显示了在抗DE保姆空间中让人联想到单例的保形性能。第二个行为是基于D'Alembert方程的辐射解决方案的空间,即Sachs对BMS的表示,我们与标量无质量的Poincare表示相关,并扩展到任何Carrollian歧管。相应的包围代数是BMS的高旋转延伸,可以解释为Minkowski SpaceTime周围推定的外来高旋转重力理论的渐近对称性。一路上,我们提供了Carrollian几何形状及其与BMS的关系的教学介绍。
Starting from the asymptotic kinematics of massless scalar fields near null infinity in any spacetime dimension, we build two higher-spin extensions of the Carrollian definition of the BMS group and its generalisations. The first extension exhibits conformal properties reminiscent of the singleton in Anti-de Sitter space. The second acts on the space of radiative solutions of the d'Alembert equation, i.e. on Sachs's representation of BMS, which we relate to the scalar massless Poincare representation and extend to any Carrollian manifold. The corresponding enveloping algebra is a higher-spin extension of BMS that can be interpreted as the asymptotic symmetry of a putative exotic higher-spin gravity theory around Minkowski spacetime. Along the way, we provide a pedagogical introduction to Carrollian geometry and its relation to BMS.