论文标题
迈向6G的智能毫米和Terahertz通信:计算机视觉辅助波束形成
Towards Intelligent Millimeter and Terahertz Communication for 6G: Computer Vision-aided Beamforming
论文作者
论文摘要
由多输入 - 型 - 型号输出(MIMO)天线阵列实现的波束形成技术已被广泛用于补偿毫米波(MMWave)带中的严重路径损失。在5G NR系统中,采用横梁扫描和光束细化来找出与移动设备对齐的最佳光束码头。由于代码簿的握手和有限的分辨率,在各种情况下,根据数据速率,能源消耗以及处理延迟的各种情况,当今的基于5G的光束管理策略在各种情况下无效。本文的目的是基于计算机视觉(CV)技术介绍一种新型的梁管理框架。在此框架中,称为计算机视觉辅助梁管理(CVBM),附加到BS上的相机可捕获图像,然后基于深度学习的对象检测器标识了移动设备的3D位置。由于基站可以直接设置梁方向而无需代码量量化和反馈延迟,因此CVBM可实现明显的束成绩增益和延迟降低。使用特殊设计的数据集称为视觉对象用于光束管理(VOBEM),我们证明了CVBM可在光束成形增益中提高40%以上,而横梁训练在5G NR光束管理上的开销降低了40%。
Beamforming technique realized by the multiple-input-multiple-output (MIMO) antenna arrays has been widely used to compensate for the severe path loss in the millimeter wave (mmWave) bands. In 5G NR system, the beam sweeping and beam refinement are employed to find out the best beam codeword aligned to the mobile. Due to the complicated handshaking and finite resolution of the codebook, today's 5G-based beam management strategy is ineffective in various scenarios in terms of the data rate, energy consumption, and also processing latency. An aim of this article is to introduce a new type of beam management framework based on the computer vision (CV) technique. In this framework referred to as computer vision-aided beam management (CVBM), a camera attached to the BS captures the image and then the deep learning-based object detector identifies the 3D location of the mobile. Since the base station can directly set the beam direction without codebook quantization and feedback delay, CVBM achieves the significant beamforming gain and latency reduction. Using the specially designed dataset called Vision Objects for Beam Management (VOBEM), we demonstrate that CVBM achieves more than 40% improvement in the beamforming gain and 40% reduction in the beam training overhead over the 5G NR beam management.