论文标题
拓扑绝缘子中的散装通讯
Bulk-LDOS Correspondence in Topological Insulators
论文作者
论文摘要
寻求在真实材料中诊断拓扑阶段的标准一直是拓扑物理学的主要任务之一。当前,基于间隙拓扑边界状态的光谱测量值和根据分数光谱电荷的测量得出的分数异常的宽大对应关系是表征拓扑绝缘阶段的两种主要方法。但是,这两种方法需要具有内置状态或严格的整体样品空间对称性的完整带隙,这显着限制了其应用于更广义的情况。在这里,我们提出并展示了一种将非平地分层构成拓扑与分别表示状态局部密度(LDOS)(LDOS)的多维分区联系起来的方法,称为批量 - 二元对应关系。具体而言,在有限大小的拓扑非平凡的光子晶体中,我们观察到LDOS的分布分为样品的三个分区区域 - 二维内部散装区域(避免边缘和角落区域(避免边缘和角),一维边缘区域(避免角区域),以及零维角地点。相比之下,LDO分布在整个整个二维大块区域中,整个范围内的拓扑琐事。此外,我们通过在没有完整的带隙和疾病的高阶拓扑绝缘子中验证此对应关系来介绍该标准的普遍性。我们的发现提供了一种区分拓扑绝缘子并揭示拓扑定向带隙材料的未探索特征的一般方法,而无需内部隙状态。
Seeking the criterion for diagnosing topological phases in real materials has been one of the major tasks in topological physics. Currently, bulk-boundary correspondence based on spectral measurements of in gap topological boundary states and the fractional corner anomaly derived from the measurement of the fractional spectral charge are two main approaches to characterize topologically insulating phases. However, these two methods require a complete band-gap with either in-gap states or strict spatial symmetry of the overall sample which significantly limits their applications to more generalized cases. Here we propose and demonstrate an approach to link the non-trivial hierarchical bulk topology to the multidimensional partition of local-density of states (LDOS) respectively, denoted as the bulk-LDOS correspondence. Specifically, in a finite-size topologically nontrivial photonic crystal, we observe that the distribution of LDOS is divided into three partitioned regions of the sample - the two-dimensional interior bulk area (avoiding edge and corner areas), one-dimensional edge region (avoiding the corner area), and zero-dimensional corner sites. In contrast, the LDOS is distributed across the entire two-dimensional bulk area across the whole spectrum for the topologically trivial cases. Moreover, we present the universality of this criterion by validating this correspondence in both a higher-order topological insulator without a complete band gap and with disorders. Our findings provide a general way to distinguish topological insulators and unveil the unexplored features of topological directional band-gap materials without in-gap states.