论文标题
ProJB:改进的双线性偏置ProJE模型,用于知识图完成
ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph Completion
论文作者
论文摘要
知识图嵌入(KGE)方法已从广泛的AI社区(包括自然语言处理(NLP))中引起了极大的关注,用于文本生成,分类和上下文诱导。用少数维度嵌入大量的相互关系,需要在认知和计算方面进行适当的建模。最近,开发了有关自然语言的认知和计算方面的许多目标功能。其中包括最新的线性方法,双线性,具有歧管的内核,投影 - 空间和类似推断。但是,这种模型的主要挑战在于它们的损失函数,将关系嵌入的维度与相应的实体维度相关联。这会导致对对应物进行错误估算时实体之间相应关系的不准确预测。 Bordes等人发表的Proje Kge由于计算复杂性低和模型改进的高潜力,在所有翻译和双线性相互作用的同时,在捕获实体非线性的同时,都改善了这项工作。基准知识图(KGS)(例如FB15K和WN18)的实验结果表明,所提出的方法使用线性和双线性方法以及其他最新功能的方法在实体预测任务中的最新模型优于最先进的模型。另外,为该模型提出了平行处理结构,以提高大型kg的可伸缩性。还解释了不同自适应聚类和新提出的抽样方法的影响,这被证明可以有效提高知识图完成的准确性。
Knowledge Graph Embedding (KGE) methods have gained enormous attention from a wide range of AI communities including Natural Language Processing (NLP) for text generation, classification and context induction. Embedding a huge number of inter-relationships in terms of a small number of dimensions, require proper modeling in both cognitive and computational aspects. Recently, numerous objective functions regarding cognitive and computational aspects of natural languages are developed. Among which are the state-of-the-art methods of linearity, bilinearity, manifold-preserving kernels, projection-subspace, and analogical inference. However, the major challenge of such models lies in their loss functions that associate the dimension of relation embeddings to corresponding entity dimension. This leads to inaccurate prediction of corresponding relations among entities when counterparts are estimated wrongly. ProjE KGE, published by Bordes et al., due to low computational complexity and high potential for model improvement, is improved in this work regarding all translative and bilinear interactions while capturing entity nonlinearity. Experimental results on benchmark Knowledge Graphs (KGs) such as FB15K and WN18 show that the proposed approach outperforms the state-of-the-art models in entity prediction task using linear and bilinear methods and other recent powerful ones. In addition, a parallel processing structure is proposed for the model in order to improve the scalability on large KGs. The effects of different adaptive clustering and newly proposed sampling approaches are also explained which prove to be effective in improving the accuracy of knowledge graph completion.