论文标题

直接和关系关联对视觉交流的统一影响

Unifying Effects of Direct and Relational Associations for Visual Communication

论文作者

Schoenlein, Melissa A., Campos, Johnny, Lande, Kevin J., Lessard, Laurent, Schloss, Karen B.

论文摘要

人们对颜色如何映射到可视化的概念有期望,并且他们更擅长解释与他们期望的可视化。传统上,对这些期望(推断映射)的研究区分了与分类与连续信息可视化相关的不同因素。有关直接关联(例如,芒果与黄色有关)的分类信息的研究,而对连续信息的研究集中在关系上(例如,较深的颜色映射到更大的数量;深色IS偏见)。我们将这两个领域团结在一个分配推理的框架内。分配推断是人们在编码系统中指示的感知特征和概念之间推断映射的过程。观察者通过最大化每个可能的分配的“优点”或“优点”来推断全球最佳分配。作业推论的先前工作重点是分类信息的可视化。我们通过(a)扩大功绩的概念以包括关系关联,并开发一种合并多个(有时是矛盾的)优点来预测人们推断的映射的方法,将这种方法扩展到连续数据的可视化方法。我们从实验中开发并测试了我们的模型,参与者解释了ColorMap数据可视化,代表了有关环境概念的虚拟数据(阳光,阴影,野生火,海水,冰川冰)。我们发现直接和关系协会对推断映射有独立的贡献。这些结果可用于优化可视化设计以促进视觉交流。

People have expectations about how colors map to concepts in visualizations, and they are better at interpreting visualizations that match their expectations. Traditionally, studies on these expectations (inferred mappings) distinguished distinct factors relevant for visualizations of categorical vs. continuous information. Studies on categorical information focused on direct associations (e.g., mangos are associated with yellows) whereas studies on continuous information focused on relational associations (e.g., darker colors map to larger quantities; dark-is-more bias). We unite these two areas within a single framework of assignment inference. Assignment inference is the process by which people infer mappings between perceptual features and concepts represented in encoding systems. Observers infer globally optimal assignments by maximizing the "merit," or "goodness," of each possible assignment. Previous work on assignment inference focused on visualizations of categorical information. We extend this approach to visualizations of continuous data by (a) broadening the notion of merit to include relational associations and (b) developing a method for combining multiple (sometimes conflicting) sources of merit to predict people's inferred mappings. We developed and tested our model on data from experiments in which participants interpreted colormap data visualizations, representing fictitious data about environmental concepts (sunshine, shade, wild fire, ocean water, glacial ice). We found both direct and relational associations contribute independently to inferred mappings. These results can be used to optimize visualization design to facilitate visual communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源