论文标题

仅使用宿主星系光度法对天文瞬变进行分类

Classifying Astronomical Transients Using Only Host Galaxy Photometry

论文作者

Kisley, Marina, Qin, Yu-Jing, Zabludoff, Ann, Barnard, Kobus, Ko, Chia-Lin

论文摘要

Vera C. Rubin天文台对时空(LSST)的传统调查将每晚发现成千上万的外层状瞬变。大量警报需要立即对瞬态类型进行分类,以便在事件消失之前优先考虑观察随访。我们使用主机星系功能对瞬变进行分类,从而在发现时提供分类。与过去着重于使用并非总是无法访问的宿主星系功能(例如形态学)区分IA型和核心偏转超新星(SNE)的工作相反,我们确定了$ 12 $ thrastient类别的相对可能性,仅基于19个主机的$ 10 $和IR Phosticmommote bands的19个主机和颜色。我们使用内核密度估计来开发二进制和多类分类器,以估计每个瞬态类别的宿主星系性能的潜在分布。 Even in this pilot study, and ignoring relative differences in transient class frequencies, we distinguish eight transient classes at purities significantly above the 8.3% baseline (based on a classifier that assigns labels uniformly and at random): tidal disruption events ($48\%\pm27\%$, where $\pm$ indicates the 95% confidence limit), SNe Ia-91bg ($ 32 \%\ pm18 \%$),SNE IA-91T($ 23 \%\ pm11 \%$),sne ib($ 23 \%\%\ pm13 \%$),sne ii($ 17 \%\%\ pm2 \%$) ($ 16 \%\ pm4 \%$)和sne ia($ 10 \%\ pm1 \%$)。我们证明我们的模型适用于LSST,并估计我们的方法可以准确地对IA,IA-91BG,II,IBC,SLSN-I和潮汐破坏事件的每年预期的LSST警报的59%分类。我们的代码和数据集公开可用。

The Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory will discover tens of thousands of extragalactic transients each night. The high volume of alerts demands immediate classification of transient types in order to prioritize observational follow-ups before events fade away. We use host galaxy features to classify transients, thereby providing classification upon discovery. In contrast to past work that focused on distinguishing Type Ia and core-collapse supernovae (SNe) using host galaxy features that are not always accessible (e.g., morphology), we determine the relative likelihood across $12$ transient classes based on only 19 host apparent magnitudes and colors from $10$ optical and IR photometric bands. We develop both binary and multiclass classifiers, using kernel density estimation to estimate the underlying distribution of host galaxy properties for each transient class. Even in this pilot study, and ignoring relative differences in transient class frequencies, we distinguish eight transient classes at purities significantly above the 8.3% baseline (based on a classifier that assigns labels uniformly and at random): tidal disruption events ($48\%\pm27\%$, where $\pm$ indicates the 95% confidence limit), SNe Ia-91bg ($32\%\pm18\%$), SNe Ia-91T ($23\%\pm11\%$), SNe Ib ($23\%\pm13\%$), SNe II ($17\%\pm2\%$), SNe IIn ($17\%\pm6\%$), SNe II P ($16\%\pm4\%$), and SNe Ia ($10\%\pm1\%$). We demonstrate that our model is applicable to LSST and estimate that our approach may accurately classify 59% of LSST alerts expected each year for SNe Ia, Ia-91bg, II, Ibc, SLSN-I, and tidal disruption events. Our code and dataset are publically available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源