论文标题
遥感对象检测的多元角度表示
Multi-Grained Angle Representation for Remote Sensing Object Detection
论文作者
论文摘要
任意为导向的对象检测(AOOD)在遥感方案中的图像理解起着重要作用。现有的AOOD方法面临歧义和高成本的挑战。为此,提出了由粗粒角分类(CAC)和细粒角回归(FAR)组成的多透明角度表示(MGAR)方法。具体而言,设计的CAC通过离散的角度编码(DAE)避免了角度预测的歧义,并通过使DAE的粒度变形来降低复杂性。基于CAC,FAR的发展是为了优化角度预测,成本要比狭窄的DAE粒度要低得多。此外,与IOU指导的自适应重新加权机制相交,旨在提高角度预测的准确性(IFL)。在几个公共遥感数据集上进行了广泛的实验,这证明了拟议的MGAR的有效性。此外,对嵌入式设备进行的实验表明,所提出的MGAR对轻型部署也很友好。
Arbitrary-oriented object detection (AOOD) plays a significant role for image understanding in remote sensing scenarios. The existing AOOD methods face the challenges of ambiguity and high costs in angle representation. To this end, a multi-grained angle representation (MGAR) method, consisting of coarse-grained angle classification (CAC) and fine-grained angle regression (FAR), is proposed. Specifically, the designed CAC avoids the ambiguity of angle prediction by discrete angular encoding (DAE) and reduces complexity by coarsening the granularity of DAE. Based on CAC, FAR is developed to refine the angle prediction with much lower costs than narrowing the granularity of DAE. Furthermore, an Intersection over Union (IoU) aware FAR-Loss (IFL) is designed to improve accuracy of angle prediction using an adaptive re-weighting mechanism guided by IoU. Extensive experiments are performed on several public remote sensing datasets, which demonstrate the effectiveness of the proposed MGAR. Moreover, experiments on embedded devices demonstrate that the proposed MGAR is also friendly for lightweight deployments.