论文标题
原子压力传感器的交叉校准和偏离光颗粒的量子衍射碰撞普遍性
Cross-calibration of atomic pressure sensors and deviation from quantum diffractive collision universality for light particles
论文作者
论文摘要
通用功能仅取决于通用订单分散系数的大小,$ c_6 $,通用函数近似于原子原子和原子 - 分子碰撞的总室温,速度平均横截面。总横截面的此功能以及通用函数,用于通过扫视角碰撞传递的能量分布($ p _ {\ rm {qdu} 6} $)可用于经验确定总碰撞横截面并实现自我校准的真空压力标准。此前已对RB+N $ _2 $和RB+RB碰撞进行了验证。但是,预期在小$ C_6 $的极限和小还原质量的限制中,预期汇编能量分布将与$ p _ {\ rm {qdu} 6} $偏差。在这里,我们通过在RB+H $ _2 $和Li+H $ _2 $之间进行直接跨物种损失率的比较来观察此偏差,并使用$ \ langleσ_{\ langleσ_{\ rmm {tot rm {tot}}}} \ rangle,v \ rangle,v \ rangle _ _2 $ _2我们发现速度平均为总碰撞横截面比,$ r = \langleσ_{\ rm {tot}}} \,v \ rangle _ {\ rm {li+h} _2} _2} \ rangle _ {\ rm {rb+h} _2} = 0.83(5)$。基于\ textIt {ab intib} $ \langleσ_{\ rm {tot}}} \,v \ rangle _ {\ rm {\ rm {li+h} _2} = 3.13(6) σ_ {\ rm {tot}} \,V \ rangle _ {\ rm {\ rm {rb+h} _2} _2} = 3.8(2)= 3.8(2)\ times 10^{ - 15} $ m $^3 $/s,与a rb+h $ _2 $ _2 $ _2 $ _2 $ \ textit { σ_ {\ Mathrm {tot}} v \ rangle _ {\ mathrm {rb+h_2}} = 3.57 \ times 10^{ - 15} \ 15} \ Mathrm {M}^3/\ Mathrm {s} $。 $ \langleσ_{\ rm {tot}} \,v \ rangle _ {\ rm {rb+h} _2} = 5.52(9)\ times 10^{ - 15} $ 15} $ M $^3 $/s。最后,这项工作演示了如何执行传感器原子的交叉校准以扩展和增强基于冷原子的压力传感器。
The total room-temperature, velocity-averaged cross section for atom-atom and atom-molecule collisions is well approximated by a universal function depending only on the magnitude of the leading order dispersion coefficient, $C_6$. This feature of the total cross section together with the universal function for the energy distribution transferred by glancing angle collisions ($P_{\rm{QDU}6}$) can be used to empirically determine the total collision cross section and realize a self-calibrating, vacuum pressure standard. This was previously validated for Rb+N$_2$ and Rb+Rb collisions. However, the post-collision energy distribution is expected to deviate from $P_{\rm{QDU}6}$ in the limit of small $C_6$ and small reduced mass. Here we observe this deviation experimentally by performing a direct cross-species loss rate comparison between Rb+H$_2$ and Li+H$_2$ and using the \textit{ab initio} value of $\langle σ_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2}$. We find a velocity averaged total collision cross section ratio, $R = \langle σ_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2} : \langle σ_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 0.83(5)$. Based on an \textit{ab initio} computation of $\langle σ_{\rm{tot}} \, v \rangle_{\rm{Li+H}_2} = 3.13(6)\times 10^{-15}$ m$^3$/s, we deduce $\langle σ_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 3.8(2) \times 10^{-15}$ m$^3$/s, in agreement with a Rb+H$_2$ \textit{ab initio} value of $\langle σ_{\mathrm{tot}} v \rangle_{\mathrm{Rb+H_2}} = 3.57 \times 10^{-15} \mathrm{m}^3/\mathrm{s}$.By contrast, fitting the Rb+H$_2$ loss rate as a function of trap depth to the universal function we find $\langle σ_{\rm{tot}} \, v \rangle_{\rm{Rb+H}_2} = 5.52(9) \times 10^{-15}$ m$^3$/s. Finally, this work demonstrates how to perform a cross-calibration of sensor atoms to extend and enhance the cold atom based pressure sensor.