论文标题

3D多米诺骨牌砖:不规则的磁盘和连接的组件在翻转下

3D domino tilings: irregular disks and connected components under flips

论文作者

de Marreiros, Raphael

论文摘要

我们考虑了圆柱体的三维多米诺式瓷砖$ \ Mathcal {r} _n = \ Mathcal {d} \ times [0,n] $,其中$ \ Mathcal {d} \ subset \ subset \ subbb {r}^2 $是固定的Quadric disk and Quadric disk and $ n \ n \ n \ n \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ bb {多米诺骨牌是$ 2 \ times 1 \ times 1 $砖。翻转是斜利$ \ Mathcal {t}(\ Mathcal {r} _n)$的本地移动:删除两个相邻的多米诺骨牌,然后在旋转后将其放回。扭曲是一个翻转不变的,将整数编号与每个平铺相关联。对于某些磁盘$ \ MATHCAL {D} $,称为常规,两个$ \ Mathcal {r} _n $的两个瓷砖一旦我们将垂直空间添加到圆柱体。我们有,如果$ \ Mathcal {d} $是常规的,则在$ \ Mathcal {t}(\ Mathcal {r} _n)$ flips下的最大连接组件的大小是$θ(n^{ - \ \ frac {1}} {1}} {2}}} {2}} {2}} | \ nathcal} Domino组$ g _ {\ Mathcal {d}} $捕获了瓷砖空间的信息。且仅当$ g _ {\ mathcal {d}} $是差异为disk $ \ mathcal {d} $是常规的,仅当$ \ mathbb {z} \ oplus \ oplus \ mathbb {z}/(z}/(2)$;足够大的矩形是常规的。 我们证明某些磁盘家庭是不规则的。我们表明,在磁盘$ \ Mathcal {d} $中存在瓶颈通常意味着不规则。在许多但不是全部的情况下,我们还证明了$ \ Mathcal {d} $非常不规则,即,存在$ g _ {\ Mathcal {d}}}}^+$($ g _的$ g _ of Index of $ g _ _ {此外,我们表明,如果$ \ Mathcal {d} $非常不规则,那么最大的连接组件的基数是$ \ Mathcal {t}(\ Mathcal {r} _n)$ is $ o(c^n | \ nathcal {t}($ Mathcal {t}(\ Mathcal {\ Mathcal {r Mathcal {r Mathcal {r Mathcal {r Mathcal {r Mathcal {r Mathcal {R} = for) (0,1)$。

We consider three-dimensional domino tilings of cylinders $\mathcal{R}_N = \mathcal{D} \times [0,N]$ where $\mathcal{D} \subset \mathbb{R}^2$ is a fixed quadriculated disk and $N \in \mathbb{N}$. A domino is a $2 \times 1 \times 1$ brick. A flip is a local move in the space of tilings $\mathcal{T}(\mathcal{R}_N)$: remove two adjacent dominoes and place them back after a rotation. The twist is a flip invariant which associates an integer number to each tiling. For some disks $\mathcal{D}$, called regular, two tilings of $\mathcal{R}_N$ with the same twist can be joined by a sequence of flips once we add vertical space to the cylinder. We have that if $\mathcal{D}$ is regular then the size of the largest connected component under flips of $\mathcal{T}(\mathcal{R}_N)$ is $Θ(N^{-\frac{1}{2}}|\mathcal{T}(\mathcal{R}_N)|)$. The domino group $G_{\mathcal{D}}$ captures information of the space of tilings. A disk $\mathcal{D}$ is regular if and only if $G_{\mathcal{D}}$ is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/(2)$; sufficiently large rectangles are regular. We prove that certain families of disks are irregular. We show that the existence of a bottleneck in a disk $\mathcal{D}$ often implies irregularity. In many, but not all, of these cases, we also prove that $\mathcal{D}$ is strongly irregular, i.e., that there exists a surjective homomorphism from $G_{\mathcal{D}}^+$ (a subgroup of index two of $G_{\mathcal{D}}$) to the free group of rank two. Moreover, we show that if $\mathcal{D}$ is strongly irregular then the cardinality of the largest connected component under flips of $\mathcal{T}(\mathcal{R}_N)$ is $O(c^N |\mathcal{T}(\mathcal{R}_N)|)$ for some $c \in (0,1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源