论文标题
分子对称性旋转空间(MSASS)中的配位化学
Coordination chemistry in molecular symmetry adapted spin space (mSASS)
论文作者
论文摘要
许多化学领域都致力于理解,预测和控制强烈局部电子的行为的挑战。例子包括分子磁性和发光,晶体中的颜色中心,光化学和量子传感,但只有几个。多年来,已经开发了强大的量子化学方法,简单直观模型和现象学参数化的汞合金,提供了越来越复杂和专业的方法。即使有了越来越多的专业化,仍然存在普遍的挑战,这是令人惊讶的通用 - 同时描述了连续对称性(例如自旋和轨道角动量)和离散对称性(例如晶体场)。对于这些复杂系统中的建模行为对于异常或技术相关行为的金属离子越来越重要。此外,开发具有身体上敏感参数的广泛模型具有促进跨学科协作和大规模元分析的潜力。我们提出了一种广义算法方法,即分子对称性旋转空间(MSASS)对局部电子结构。我们以对称构成的矩阵形式得出了哈密顿量,并提供了自由参数和示例的精确说明。尽管在实施方面的初步效果,但这种方法的基本好处是对空间和旋转轨对称的处理,而无需扰动近似。通常,MSASS Hamiltonian很大,但有限,并且可以以高效率为单位上对角度化,从而为电子结构的概念模型提供了基础,这些模型自然融合了自旋,同时利用了晶体学对称性的直觉和效率优势。对于MSASS Hamiltonian的生成,我们为Mathematica软件包GTPACK提供了实现。
Many areas of chemistry are devoted to the challenge of understanding, predicting, and controlling the behavior of strongly localized electrons. Examples include molecular magnetism and luminescence, color centers in crystals, photochemistry and quantum sensing to name but a few. Over the years, an amalgam of powerful quantum chemistry methods, simple intuitive models, and phenomenological parameterizations have been developed, providing increasingly complex and specialized methodologies. Even with increasing specialization, a pervasive challenge remains that is surprisingly universal - the simultaneous description of continuous symmetries (e.g. spin and orbital angular momenta) and discrete symmetries (e.g. crystal field). Modeling behavior in these complex systems is increasingly important for metal ions of unusual or technologically relevant behavior. Additionally, development of broad-scope models with physically-meaningful parameters carries the potential to facilitate interdisciplinary collaboration and large-scale meta analysis. We propose a generalized algorithmic approach, the molecular symmetry adapted spin space (mSASS), to localized electronic structure. We derive the Hamiltonian in symmetry-constrained matrix form with an exact account of free parameters and examples. Although preliminary in its implementation, a fundamental benefit of this approach is the treatment of spatial and spin-orbit symmetries without the need for perturbative approximations. In general, the mSASS Hamiltonian is large but finite and can be diagonalized numerically with high efficiency, providing a basis for conceptual models of electronic structure that naturally incorporates spin while leveraging the intuition and efficiency benefits of crystallographic symmetry. For the generation of the mSASS Hamiltonian, we provide an implementation into the Mathematica Software Package, GTPack.