论文标题

高光谱成像的波长2D卷积

Wavelength-aware 2D Convolutions for Hyperspectral Imaging

论文作者

Varga, Leon Amadeus, Messmer, Martin, Benbarka, Nuri, Zell, Andreas

论文摘要

深度学习可以大大提高高光谱成像(HSI)的分类精度。尽管如此,对大多数小型高光谱数据集的培训并不是一件容易的事。两个关键的挑战是录音的大信道维度以及不同制造商的摄像机之间的不相容性。通过引入合适的模型偏置并连续定义通道维度,我们提出了针对高光谱成像的这些挑战进行优化的2D卷积。我们根据两个不同的高光谱应用(内联检查和遥感)评估该方法。除了显示模型的优势外,修改还增加了其他解释能力。此外,该模型以数据驱动的方式学习了必要的相机过滤器。基于这些相机过滤器,可以设计最佳的相机。

Deep Learning could drastically boost the classification accuracy for Hyperspectral Imaging (HSI). Still, the training on the mostly small hyperspectral data sets is not trivial. Two key challenges are the large channel dimension of the recordings and the incompatibility between cameras of different manufacturers. By introducing a suitable model bias and continuously defining the channel dimension, we propose a 2D convolution optimized for these challenges of Hyperspectral Imaging. We evaluate the method based on two different hyperspectral applications (inline inspection and remote sensing). Besides the shown superiority of the model, the modification adds additional explanatory power. In addition, the model learns the necessary camera filters in a data-driven manner. Based on these camera filters, an optimal camera can be designed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源