论文标题

使用波长划分多路复用的神经形态计算

Neuromorphic computing using wavelength-division multiplexing

论文作者

Xu, Xingyuan, Han, Weiwei, Tan, Mengxi, Sun, Yang, Li, Yang, Wu, Jiayang, Morandotti, Roberto, Mitchell, Arnan, Xu, Kun, Moss, David J.

论文摘要

光学神经网络(ONNS)或光学神经形态硬件加速器,有可能显着增强主流电子处理器的计算能力和能源效率,因为它们的超大型带宽的带宽最高为10s,可与10s的Terahertz一起使用模拟结构,以避免需要阅读和书写数据,并需要阅读和书写数据。已经采用了不同的多路复用技术来证明ONN,其中波长划分多路复用(WDM)技术在广泛带宽方面充分利用了光学的独特优势。在这里,我们回顾了WDM基于ONN的最新进展,重点是使用集成的Microcombs实施ONN的方法。我们使用光学卷积加速器以每秒11个TERA操作运行,为人类图像处理提供了结果。还讨论了需要解决未来申请的ONN的公开挑战和局限性。

Optical neural networks (ONNs), or optical neuromorphic hardware accelerators, have the potential to dramatically enhance the computing power and energy efficiency of mainstream electronic processors, due to their ultralarge bandwidths of up to 10s of terahertz together with their analog architecture that avoids the need for reading and writing data back and forth. Different multiplexing techniques have been employed to demonstrate ONNs, amongst which wavelength division multiplexing (WDM) techniques make sufficient use of the unique advantages of optics in terms of broad bandwidths. Here, we review recent advances in WDM based ONNs, focusing on methods that use integrated microcombs to implement ONNs. We present results for human image processing using an optical convolution accelerator operating at 11 Tera operations per second. The open challenges and limitations of ONNs that need to be addressed for future applications are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源