论文标题

一项关于大型人口系统和可扩展多代理强化学习的调查

A Survey on Large-Population Systems and Scalable Multi-Agent Reinforcement Learning

论文作者

Cui, Kai, Tahir, Anam, Ekinci, Gizem, Elshamanhory, Ahmed, Eich, Yannick, Li, Mengguang, Koeppl, Heinz

论文摘要

大型人口系统的分析和控制对研究和工程的各个领域引起了极大的兴趣,从机器人群的流行病学到经济学和金融。一种越来越流行和有效的方法来实现多代理系统中的顺序决策,这是通过多代理增强学习,因为它允许对高度复杂的系统进行自动和无模型的分析。但是,可伸缩性的关键问题使控制和增强学习算法的设计变得复杂,尤其是在具有大量代理的系统中。尽管强化学习在许多情况下都发现了经验成功,但许多代理商的问题很快就变得棘手了,需要特别考虑。在这项调查中,我们将阐明当前的方法,以通过多代理强化学习以及通过诸如平均场游戏,集体智能或复杂的网络理论等研究领域进行仔细理解和分析大型人口系统。这些经典独立的主题领域提供了多种理解或建模大型人口系统的方法,这可能非常适合将来的可拖动MARL算法制定。最后,我们调查了大规模控制的潜在应用领域,并确定了实用系统中学习算法的富有成果的未来应用。我们希望我们的调查能够为理论和应用科学的初级和高级研究人员提供洞察力和未来的方向。

The analysis and control of large-population systems is of great interest to diverse areas of research and engineering, ranging from epidemiology over robotic swarms to economics and finance. An increasingly popular and effective approach to realizing sequential decision-making in multi-agent systems is through multi-agent reinforcement learning, as it allows for an automatic and model-free analysis of highly complex systems. However, the key issue of scalability complicates the design of control and reinforcement learning algorithms particularly in systems with large populations of agents. While reinforcement learning has found resounding empirical success in many scenarios with few agents, problems with many agents quickly become intractable and necessitate special consideration. In this survey, we will shed light on current approaches to tractably understanding and analyzing large-population systems, both through multi-agent reinforcement learning and through adjacent areas of research such as mean-field games, collective intelligence, or complex network theory. These classically independent subject areas offer a variety of approaches to understanding or modeling large-population systems, which may be of great use for the formulation of tractable MARL algorithms in the future. Finally, we survey potential areas of application for large-scale control and identify fruitful future applications of learning algorithms in practical systems. We hope that our survey could provide insight and future directions to junior and senior researchers in theoretical and applied sciences alike.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源