论文标题

雷诺的冷冻传播从高保真数据到雷诺平均次级流的模拟

Frozen propagation of Reynolds force vector from high-fidelity data into Reynolds-averaged simulations of secondary flows

论文作者

Amarloo, Ali, Forooghi, Pourya, Abkar, Mahdi

论文摘要

从高保真源(即直接的数值模拟和大型模拟)中成功传播信息到雷诺平均的navier-Stokes(RANS)方程在数据驱动的数据驱动的领域中起着重要作用。在高保真数据中携带的小误差可以将放大误差传播到平均流场中,而较高的雷诺数数量使误差传播恶化。在这项研究中,我们比较了两种prandtl的第二类流量的一系列繁殖方法:低雷诺数的平方管流量和雷诺数很高的粗糙度引起的二级流量。我们表明,与雷诺应力张量(RST)的隐式处理相比,冷冻处理导致错误传播较少,并且对于雷诺数很高的病例,不建议使用非常高的雷诺数,明确和隐式处理。受到获得的结果的启发,我们将冷冻处理引入了雷诺力量矢量(RFV)的传播,这导致误差传播较少。具体而言,对于两种情况下,在低雷诺数和高雷诺数下,与第一个传播相比,RFV的传播导致一个数量级的误差较低。在冷冻处理方法中,使用三种不同的涡流模型来评估湍流扩散对误差传播的影响。我们表明,无论基线模型如何,RFV的冷冻处理都会导致误差传播更少。我们将一个额外的校正项与RFV的冷冻处理相结合,这使得我们的繁殖技术能够再现类似于高保真数据的速度和湍流动能场。

Successful propagation of information from high-fidelity sources (i.e., direct numerical simulations and large-eddy simulations) into Reynolds-averaged Navier-Stokes (RANS) equations plays an important role in the emerging field of data-driven RANS modeling. Small errors carried in high-fidelity data can propagate amplified errors into the mean flow field, and higher Reynolds numbers worsen the error propagation. In this study, we compare a series of propagation methods for two cases of Prandtl's secondary flows of the second kind: square-duct flow at a low Reynolds number and roughness-induced secondary flow at a very high Reynolds number. We show that frozen treatments result in less error propagation than the implicit treatment of Reynolds stress tensor (RST), and for cases with very high Reynolds numbers, explicit and implicit treatments are not recommended. Inspired by the obtained results, we introduce the frozen treatment to the propagation of Reynolds force vector (RFV), which leads to less error propagation. Specifically, for both cases at low and high Reynolds numbers, propagation of RFV results in one order of magnitude lower error compared to RST propagation. In the frozen treatment method, three different eddy-viscosity models are used to evaluate the effect of turbulent diffusion on error propagation. We show that, regardless of the baseline model, the frozen treatment of RFV results in less error propagation. We combined one extra correction term for turbulent kinetic energy with the frozen treatment of RFV, which makes our propagation technique capable of reproducing both velocity and turbulent kinetic energy fields similar to high-fidelity data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源