论文标题

使用三元保守的相田晶格玻尔兹曼方法,在液体池中浸入液体池中的固定液滴之间的相互作用

Interaction between a Rising Bubble and a Stationary Droplet Immersed in a Liquid Pool using Ternary Conservative Phase-Field Lattice Boltzmann Method

论文作者

Zhao, Chunheng, Lee, Taehun

论文摘要

当将固定的气泡和浸入液体池中的固定液滴相互接触时,它们会形成一个气泡 - 滴滴骨料。它的平衡形态和稳定性在很大程度上取决于不同成分的表面张力(称为扩散因子)的组合。在这项研究中,我们探讨了升高的气泡与固定液滴之间的相互作用,以更好地了解聚结,上升的动力学以及气泡 - 滴滴骨料的形态变化。对具有各种气泡大小和扩散因子的相互作用过程进行了系统研究。当前的仿真框架由用于接口跟踪的三元保守相位晶格Boltzmann方法(LBM)和用于水动力学的速度压力LBM,该速度压力LBM已验证,该基准验证了液态透镜和寄生虫等静态液滴的基准验证,并具有多个流行的表面张力配方。我们进一步测试了我们的LBM,以了解两滴最初与各种扩散因子接触的形态变化,并描绘了相图中的最终形态。可以通过系统地改变扩散因子的迹象来复制分离的,部分吞没和完全吞噬的形态。基于在固定条件下获得的最终形态来模拟气泡和固定的液滴相互作用,该形态通过对上升的气泡施加假想的浮力。结果表明,具有双重乳液形态的气泡 - 滴滴骨料可以最大程度地减少泡沫 - 滴头聚集体的散发,并达到比具有部分吞噬形态的骨料的终端速度更大。

When a stationary bubble and a stationary droplet immersed in a liquid pool are brought in contact with each other, they form a bubble-droplet aggregate. Its equilibrium morphology and stability largely depend on the combination of different components' surface tensions, known as spreading factor. In this study, we look at the interaction between a rising bubble and a stationary droplet to better understand the dynamics of coalescence and rising as well as morphological changes for the bubble-droplet aggregate. A systematic study is conducted on the interaction processes with various bubble sizes and spreading factors. The current simulation framework consists of the ternary conservative phase-field Lattice Boltzmann method (LBM) for interface tracking and the velocity-pressure LBM for hydrodynamics, which is validated for the benchmark cases such as liquid lens and parasitic currents around a static droplet with several popular surface tension formulations. We further test our LBM for the morphology changes of two droplets initially in contact with various spreading factors and depict the final morphologies in a phase diagram. The separated, partially engulfed and completely engulfed morphologies can be replicated by systematically altering the sign of the spreading factors. The rising bubble and stationary droplet interaction is simulated based on the final morphologies obtained under stationary conditions by imposing an imaginary buoyancy force on the rising bubble. The results indicate that the bubble-droplet aggregate with double emulsion morphology can minimize the distotion of the bubble-droplet aggregate and achieve a greater terminal velocity than the aggregate with partially engulfed morphology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源