论文标题
自动驾驶汽车的基于音频分析的人口贩运检测框架
Audio Analytics-based Human Trafficking Detection Framework for Autonomous Vehicles
论文作者
论文摘要
人口贩运是一个普遍的问题,尽管在全球范围内为与之作斗争,但仍坚持不懈。任何年龄,种族,种族,性别,性别认同,性取向,国籍,移民身份,文化背景,宗教,社会经济阶级和教育的个人都可以成为人口贩运的受害者。随着技术的进步和引入自动驾驶汽车(AVS),人口贩子将采用新的方式运输受害者,这可以加速有组织的人口贩运网络的增长,这可以使对执法机构更具挑战性的人口贩运的发现。这项研究的目的是为自动驾驶汽车开发一个创新的音频分析人口贩运检测框架。这项研究的主要贡献是:(i)为AV定义四个非平凡,可行和现实的人口贩运情景; (ii)创建一个与人口贩运有关的新的,全面的音频数据集,其中五个类别,即哭泣,尖叫,车门爆炸,汽车噪音和对话; (iii)开发一个与人口贩运有关的音频数据分类的深1D卷积神经网络(CNN)体系结构。我们还使用新的音频数据集进行了案例研究,并评估了深1-D CNN的音频分类性能。我们的分析表明,深1-D CNN可以将来自人口贩运受害者的声音与非人口贩运声音的准确性为95%,这证明了我们框架的功效。
Human trafficking is a universal problem, persistent despite numerous efforts to combat it globally. Individuals of any age, race, ethnicity, sex, gender identity, sexual orientation, nationality, immigration status, cultural background, religion, socioeconomic class, and education can be a victim of human trafficking. With the advancements in technology and the introduction of autonomous vehicles (AVs), human traffickers will adopt new ways to transport victims, which could accelerate the growth of organized human trafficking networks, which can make the detection of trafficking in persons more challenging for law enforcement agencies. The objective of this study is to develop an innovative audio analytics-based human trafficking detection framework for autonomous vehicles. The primary contributions of this study are to: (i) define four non-trivial, feasible, and realistic human trafficking scenarios for AVs; (ii) create a new and comprehensive audio dataset related to human trafficking with five classes i.e., crying, screaming, car door banging, car noise, and conversation; and (iii) develop a deep 1-D Convolution Neural Network (CNN) architecture for audio data classification related to human trafficking. We have also conducted a case study using the new audio dataset and evaluated the audio classification performance of the deep 1-D CNN. Our analyses reveal that the deep 1-D CNN can distinguish sound coming from a human trafficking victim from a non-human trafficking sound with an accuracy of 95%, which proves the efficacy of our framework.