论文标题

建立机器人应用的置信度指导形状完成

Towards Confidence-guided Shape Completion for Robotic Applications

论文作者

Rosasco, Andrea, Berti, Stefano, Bottarel, Fabrizio, Colledanchise, Michele, Natale, Lorenzo

论文摘要

许多涉及某种形式的3D视觉感知的机器人任务极大地受益于对工作环境的完整知识。但是,机器人通常必须应对非结构化的环境,并且由于工作空间有限,混乱或对象自我划分,它们的板载视觉传感器只能提供不完整的信息。近年来,从部分视觉数据中推断出完整的3D对象表示形式的有效手段开始,深度学习架构已开始吸引人。然而,大多数现有的最新方法都以体素电网形式提供了固定的输出分辨率,这与神经网络输出阶段的大小严格相关。尽管这足以完成某些任务,例如导航,抓地力和操纵的障碍需要更精细的分辨率,并且简单地扩大神经网络输出在计算上是昂贵的。在本文中,我们通过基于隐式3D表示的对象形状完成方法来解决此限制,从而为每个重建点提供置信值。作为第二个贡献,我们提出了一种基于梯度的方法,用于在推理时在任意分辨率下有效地采样这种隐式函数。我们通过将重建形状与地面真理进行比较,并通过在机器人抓紧管道中部署形状完成算法来实验验证我们的方法。在这两种情况下,我们将结果与最先进的形状完成方法进行了比较。

Many robotic tasks involving some form of 3D visual perception greatly benefit from a complete knowledge of the working environment. However, robots often have to tackle unstructured environments and their onboard visual sensors can only provide incomplete information due to limited workspaces, clutter or object self-occlusion. In recent years, deep learning architectures for shape completion have begun taking traction as effective means of inferring a complete 3D object representation from partial visual data. Nevertheless, most of the existing state-of-the-art approaches provide a fixed output resolution in the form of voxel grids, strictly related to the size of the neural network output stage. While this is enough for some tasks, e.g. obstacle avoidance in navigation, grasping and manipulation require finer resolutions and simply scaling up the neural network outputs is computationally expensive. In this paper, we address this limitation by proposing an object shape completion method based on an implicit 3D representation providing a confidence value for each reconstructed point. As a second contribution, we propose a gradient-based method for efficiently sampling such implicit function at an arbitrary resolution, tunable at inference time. We experimentally validate our approach by comparing reconstructed shapes with ground truths, and by deploying our shape completion algorithm in a robotic grasping pipeline. In both cases, we compare results with a state-of-the-art shape completion approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源