论文标题

Weyl-Type $ F(Q,T)$ GRAVITY中无差减速参数的相互作用

Interaction of divergence-free deceleration parameter in Weyl-type $f(Q,T)$ gravity

论文作者

Gadbail, Gaurav N., Arora, Simran, Kumar, Praveen, Sahoo, P. K.

论文摘要

我们研究对称远程平行重力的扩展,即weyl-type $ f(q,t)$重力和减速参数的无差参数化参数$ q(z)= q_ {0}+q_ {0}+q_ {1} {1} \ frac {z(1+z(1+z)} $ z^$ q_ $ q _自由常数)探索宇宙的演变。通过考虑上述$ Q $的参数形式,我们得出了哈勃解决方案,并将其进一步将其强加于Weyl-type $ f(q,t)$ GRAVITY的弗里德曼方程。要查看此模型是否可以挑战$λ$ CDM限制,我们使用贝叶斯分析对观察性哈勃数据($ ohd $)和Pantheon样本($ sne \,ia $)计算了模型参数的约束。此外,减速参数描绘了宇宙的加速行为,其现值$ q_0 $和过渡红移$ z_t $(以$ 1-σ$和$ 2-σ$置信度的延伸从减速到加速度的扩展)。我们还检查了状态参数的能量密度,压力和有效方程的演变。最后,我们证明了减速参数的无差参数形式与Weyl-Type $ f(q,t)$重力一致。

We study an extension of symmetric teleparallel gravity i.e. Weyl-type $f(Q,T)$ gravity and the divergence-free parametrization of the deceleration parameter $q(z) = q_{0}+q_{1}\frac{z(1+z)}{1+z^2}$ ($q_{0}$ and $q_{1}$ are free constants) to explore the evolution of the universe. By considering the above parametric form of $q$, we derive the Hubble solution and further impose it in the Friedmann equations of Weyl-type $f(Q, T)$ gravity. To see whether this model can challenge the $Λ$CDM limits, we computed the constraints on the model parameters using the Bayesian analysis for the Observational Hubble data ($OHD$) and the Pantheon sample ($SNe\,Ia$). Furthermore, the deceleration parameter depicts the accelerating behavior of the universe with the present value $q_0$ and the transition redshift $z_t$ (at which the expansion transits from deceleration to acceleration) with $1-σ$ and $2-σ$ confidence level. We also examine the evolution of the energy density, pressure, and effective equation of state parameters. Finally, we demonstrate that the divergence-free parametric form of the deceleration parameter is consistent with the Weyl-type $f(Q,T)$ gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源