论文标题
磁化动力学和二维磁铁的逆转
Magnetization dynamics and reversal of two-dimensional magnets
论文作者
论文摘要
基于经典的Landau-Lifshitz-Gilbert(LLG)方程的微磁化模拟长期以来一直是对三维(3D)磁体进行建模磁化动力学和逆转的强大方法。对于二维(2D)磁体,即使在固有的强旋转波动引起的低温下,磁化逆转也总是伴随着磁化的崩溃。我们提出了一种微磁理论,该理论明确考虑了磁化逆转过程中2D磁体的快速消电和迁移动力学。我们将理论应用于单域磁铁,以说明2D和3D磁体的磁化轨迹和反转时间的基本差异。
Micromagnetics simulation based on the classical Landau-Lifshitz-Gilbert (LLG) equation has long been a powerful method for modeling magnetization dynamics and reversal of three-dimensional (3D) magnets. For two-dimensional (2D) magnets, the magnetization reversal always accompanies the collapse of the magnetization even at low temperatures due to intrinsic strong spin fluctuation. We propose a micromagnetic theory that explicitly takes into account the rapid demagnetization and remagnetization dynamics of 2D magnets during magnetization reversal. We apply the theory to a single-domain magnet to illustrate fundamental differences in magnetization trajectories and reversal times for 2D and 3D magnets.