论文标题
Boltzmann知识增长的平均场景游戏模型:学习和一般公用事业的限制
Boltzmann mean-field game model for knowledge growth: limits to learning and general utilities
论文作者
论文摘要
在本文中,我们调查了玻尔兹曼平均野外游戏(BMFG)的知识增长的概括,最初是由经济学家卢卡斯(Lucas)和莫尔(Moll)引入的。在BMFG中,代理密度相对于其知识水平的演变由Boltzmann方程描述。代理人通过与他人的二元互动来增加知识;它们的增加是由相互作用和学习率调节的:具有相似知识的代理人在相遇中学习了更多,而具有非常不同级别的代理人则从学习互动中受益匪浅。在学习上花费的时间的最佳时间是通过钟声方程计算的,从而导致时间PDE系统高度非线性向前。 Boltzmann和Bellman方程的解决方案的结构在很大程度上取决于Boltzmann碰撞内核的学习率以及Bellman方程中的效用函数。在本文中,我们调查了解决方案的单调性行为,用于不同的学习和效用功能,显示了解决方案的存在,并研究了它们如何影响所谓的平衡增长路径解决方案的存在,这与整体经济的指数增长有关。此外,我们通过计算实验证实并说明了我们的分析结果。
In this paper we investigate a generalisation of a Boltzmann mean field game (BMFG) for knowledge growth, originally introduced by the economists Lucas and Moll. In BMFG the evolution of the agent density with respect to their knowledge level is described by a Boltzmann equation. Agents increase their knowledge through binary interactions with others; their increase is modulated by the interaction and learning rate: Agents with similar knowledge learn more in encounters, while agents with very different levels benefit less from learning interactions. The optimal fraction of time spent on learning is calculated by a Bellman equation, resulting in a highly nonlinear forward-backward in time PDE system. The structure of solutions to the Boltzmann and Bellman equation depends strongly on the learning rate in the Boltzmann collision kernel as well as the utility function in the Bellman equation. In this paper we investigate the monotonicity behavior of solutions for different learning and utility functions, show existence of solutions and investigate how they impact the existence of so-called balanced growth path solutions, that relate to exponential growth of the overall economy. Furthermore we corroborate and illustrate our analytical results with computational experiments.