论文标题

基于身体和手部图像的人重新识别的本地感知的全球注意力网络

Local-Aware Global Attention Network for Person Re-Identification Based on Body and Hand Images

论文作者

Baisa, Nathanael L.

论文摘要

从图像中学习代表,健壮和歧视性信息对于有效的人重新识别(RE-ID)至关重要。在本文中,我们提出了一种基于身体和手部图像的人重新ID的端到端判别深度学习的复合方法。我们仔细设计了本地感知的全球注意力网络(Laga-net),这是一个多分支深度网络架构,由一个用于空间注意力的分支组成,一个用于渠道注意力的分支,一个用于全局特征表示的分支和另一个用于本地特征表示的分支。注意分支集中在图像的相关特征上,同时抑制了无关的背景。为了克服注意机制的弱点,与像素改组一样,我们将相对位置编码整合到空间注意模块中以捕获像素的空间位置。全球分支机构打算保留全球环境或结构信息。对于打算捕获细粒度信息的本地分支,我们进行统一的分区以水平上的变速器生成条纹。我们通过执行软分区来检索零件,而无需明确分区图像或需要外部提示,例如姿势估计。一系列消融研究表明,每个组件都会有助于提高LAGA-NET的性能。对四个受欢迎的基于身体的人重新ID基准和两个公开的手数据集的广泛评估表明,我们的提议方法始终优于现有的最新方法。

Learning representative, robust and discriminative information from images is essential for effective person re-identification (Re-Id). In this paper, we propose a compound approach for end-to-end discriminative deep feature learning for person Re-Id based on both body and hand images. We carefully design the Local-Aware Global Attention Network (LAGA-Net), a multi-branch deep network architecture consisting of one branch for spatial attention, one branch for channel attention, one branch for global feature representations and another branch for local feature representations. The attention branches focus on the relevant features of the image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. The global branch intends to preserve the global context or structural information. For the the local branch, which intends to capture the fine-grained information, we perform uniform partitioning to generate stripes on the conv-layer horizontally. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. A set of ablation study shows that each component contributes to the increased performance of the LAGA-Net. Extensive evaluations on four popular body-based person Re-Id benchmarks and two publicly available hand datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源