论文标题

Sierpiński曲线上的显式动态系统

Explicit Dynamical Systems on the Sierpiński Curve

论文作者

Homsomboon, Worapan

论文摘要

我们通过使用$ n- $ chamanara表面的初始系统及其$ n- $ baker转换,$ n \ geq 2 $应用了Boroński和Oprocha在Sierpiński地毯上的动力系统的倒数构造。我们表明,所有正实数均被视为地毯上动态系统的度量熵值。我们还简化了Boroński和Oprocha的证明,表明地毯上的动态系统没有Bowen规格属性。

We apply Boroński and Oprocha's inverse limit construction of dynamical systems on the Sierpiński carpet by using the initial systems of $n-$Chamanara surfaces and their $n-$baker transformations, $n \geq 2$. We show that all positive real numbers are realized as metric entropy values of dynamical systems on the carpet. We also produce a simplification of Boroński and Oprocha's proof showing that dynamical systems on the carpet do not have the Bowen specification property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源