论文标题
Sierpiński曲线上的显式动态系统
Explicit Dynamical Systems on the Sierpiński Curve
论文作者
论文摘要
我们通过使用$ n- $ chamanara表面的初始系统及其$ n- $ baker转换,$ n \ geq 2 $应用了Boroński和Oprocha在Sierpiński地毯上的动力系统的倒数构造。我们表明,所有正实数均被视为地毯上动态系统的度量熵值。我们还简化了Boroński和Oprocha的证明,表明地毯上的动态系统没有Bowen规格属性。
We apply Boroński and Oprocha's inverse limit construction of dynamical systems on the Sierpiński carpet by using the initial systems of $n-$Chamanara surfaces and their $n-$baker transformations, $n \geq 2$. We show that all positive real numbers are realized as metric entropy values of dynamical systems on the carpet. We also produce a simplification of Boroński and Oprocha's proof showing that dynamical systems on the carpet do not have the Bowen specification property.