论文标题

UAV辅助网络的优化年龄优化

Age-of-Updates Optimization for UAV-assisted Networks

论文作者

Ndiaye, Mouhamed Naby, Bergou, El Houcine, Ghogho, Mounir, Hammouti, Hajar El

论文摘要

已经提出了无人驾驶飞机(UAV),作为一种有前途的技术,可以从物联网设备收集数据并将其转发给网络。在这项工作中,我们对定期更新数据的方案感兴趣,并且收集的更新对时间敏感。特别是,如果未及时收集和分析数据,则数据更新可能会失去其价值。为了最大化数据新鲜度,我们优化了一个新的性能度量标准,即更新(AOU)。我们的目标是仔细安排无人机徘徊的位置和用户协会,以使AOU最小化。与现有的作品不同的是,关联参数被视为二进制变量,我们假设设备根据概率分布发送其更新。因此,而不是优化确定性目标函数,而是被对概率分布的期望所取代。因此,根据服务质量和能源限制,预期的AOU被优化。最初的问题是非凸,我们提出了使用内点方法解决的等效凸优化。我们的仿真结果表明,针对二进制关联的拟议方法的性能。

Unmanned aerial vehicles (UAVs) have been proposed as a promising technology to collect data from IoT devices and relay it to the network. In this work, we are interested in scenarios where the data is updated periodically, and the collected updates are time-sensitive. In particular, the data updates may lose their value if they are not collected and analyzed timely. To maximize the data freshness, we optimize a new performance metric, namely the Age-of-Updates (AoU). Our objective is to carefully schedule the UAVs hovering positions and the users' association so that the AoU is minimized. Unlike existing works where the association parameters are considered as binary variables, we assume that devices send their updates according to a probability distribution. As a consequence, instead of optimizing a deterministic objective function, the objective function is replaced by an expectation over the probability distribution. The expected AoU is therefore optimized under quality of service and energy constraints. The original problem being non-convex, we propose an equivalent convex optimization that we solve using an interior-point method. Our simulation results show the performance of the proposed approach against a binary association.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源