论文标题
软扩散:一般腐败的得分匹配
Soft Diffusion: Score Matching for General Corruptions
论文作者
论文摘要
我们定义了更广泛的腐败过程,该过程概括了先前已知的扩散模型。为了扭转这些一般的扩散,我们提出了一个称为“软得分匹配”的新目标,该目标可以在任何线性腐败过程中学习得分功能,并为Celeba提供最先进的结果。软得分匹配将网络中的退化过程包含。我们的新损失训练该模型以预测一个干净的图像,\ textit {腐败后}与扩散的观察相匹配。我们表明,我们的目标在适当的规律性条件下学习了腐败过程的适当规律条件下的可能性梯度。我们进一步开发了一种有原则的方法来选择一般扩散过程的腐败水平以及一种我们称为动量采样器的新型抽样方法。我们通过实验表明,我们的框架适用于一般线性腐败过程,例如高斯模糊和掩蔽。我们在Celeba-64上获得了最先进的FID得分$ 1.85 $,表现优于所有以前的线性扩散模型。与Vanilla Deno的扩散相比,我们还显示出显着的计算益处。
We define a broader family of corruption processes that generalizes previously known diffusion models. To reverse these general diffusions, we propose a new objective called Soft Score Matching that provably learns the score function for any linear corruption process and yields state of the art results for CelebA. Soft Score Matching incorporates the degradation process in the network. Our new loss trains the model to predict a clean image, \textit{that after corruption}, matches the diffused observation. We show that our objective learns the gradient of the likelihood under suitable regularity conditions for a family of corruption processes. We further develop a principled way to select the corruption levels for general diffusion processes and a novel sampling method that we call Momentum Sampler. We show experimentally that our framework works for general linear corruption processes, such as Gaussian blur and masking. We achieve state-of-the-art FID score $1.85$ on CelebA-64, outperforming all previous linear diffusion models. We also show significant computational benefits compared to vanilla denoising diffusion.