论文标题

图形神经网络用于预测多晶材料的有效特性:全面分析

Graph Neural Network for Predicting the Effective Properties of Polycrystalline Materials: A Comprehensive Analysis

论文作者

Dai, Minyi, Demirel, Mehmet F., Liu, Xuanhan, Liang, Yingyu, Hu, Jia-Mian

论文摘要

我们开发了一个多晶图神经网络(PGNN)模型,用于预测多晶材料的有效特性,以LI7LA3ZR2O12陶瓷为例。具有> 5000个不同不同的三维多晶微观结构的大规模数据集的有限宽度晶界是通过Voronoi Tessellation和电子反向散射衍射图像的处理而产生的。这些微观结构的有效离子电导率和弹性刚度系数是通过基于高通量物理学的模拟来计算的。优化的PGNN模型在预测有效的锂离子电导率矩阵的所有三个对角线成分时,达到了低于1.4%的误差,表现优于线性回归模型和两个基线卷积神经网络模型。顺序转发选择方法用于量化选择单个晶粒(边界)特征以提高属性预测精度的相对重要性,通过这些特征,可以通过这些特征确定临界节点和不需要的节点(边缘)特征。还研究了训练有素的PGNN模型的外推性能。通过使用预测的PGNN模型来预测电导率以预测相同的微观结构集的弹性特性来评估转移学习性能。

We develop a polycrystal graph neural network (PGNN) model for predicting the effective properties of polycrystalline materials, using the Li7La3Zr2O12 ceramic as an example. A large-scale dataset with >5000 different three-dimensional polycrystalline microstructures of finite-width grain boundary is generated by Voronoi tessellation and processing of the electron backscatter diffraction images. The effective ion conductivities and elastic stiffness coefficients of these microstructures are calculated by high-throughput physics-based simulations. The optimized PGNN model achieves a low error of <1.4% in predicting all three diagonal components of the effective Li-ion conductivity matrix, outperforming a linear regression model and two baseline convolutional neural network models. Sequential forward selection method is used to quantify the relative importance of selecting individual grain (boundary) features to improving the property prediction accuracy, through which both the critical and unwanted node (edge) feature can be determined. The extrapolation performance of the trained PGNN model is also investigated. The transfer learning performance is evaluated by using the PGNN model pretrained for predicting conductivities to predict the elastic properties of the same set of microstructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源