论文标题

部分可观测时空混沌系统的无模型预测

Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching

论文作者

Kong, Lingkun, Yu, Qixuan, Chattopadhyay, Agnishom, Glaunec, Alexis Le, Huang, Yi, Mamouras, Konstantinos, Yang, Kaiyuan

论文摘要

常规模式匹配在许多应用程序域中使用,包括文本处理,生物信息学和网络安全。模式通常用正则表达式的扩展语法表示,其中包括有界迭代或计数的计算具有挑战性的构建体,该构造描述了固定数量的模式的重复。我们为NFA执行的专业内存中硬件体系结构开发了一个设计,该架构集成了计数器和位向量元素。该设计的灵感来自非确定性计数器自动机(NCA)的理论模型。我们方法的一个关键特征是,我们静态分析正则表达式以确定计数发生所需的内存量的界限。此分析的结果由正则到硬件编译器使用,以便选择计数器或位向量元素。我们根据使用TSMC 28NM进程收集的Spice Simulation收集的电路参数在模拟器上评估了硬件实现的性能。我们发现,计数器和位矢量的用法很快胜过通过小计数量词的数量级来展现解决方案的表现。与传统的内存NFA处理器相比,有关现实工作负载的实验最多显示76%的能量和58%的面积。

Regular pattern matching is used in numerous application domains, including text processing, bioinformatics, and network security. Patterns are typically expressed with an extended syntax of regular expressions that include the computationally challenging construct of bounded iteration or counting, which describes the repetition of a pattern a fixed number of times. We develop a design for a specialized in-memory hardware architecture for NFA execution that integrates counter and bit vector elements. The design is inspired by the theoretical model of nondeterministic counter automata (NCA). A key feature of our approach is that we statically analyze regular expressions to determine bounds on the amount of memory needed for the occurrences of counting. The results of this analysis are used by a regex-to-hardware compiler in order to make an appropriate selection of counter or bit vector elements. We evaluate the performance of our hardware implementation on a simulator based on circuit parameters collected by SPICE simulation using a TSMC 28nm process. We find the usage of counter and bit vector quickly outperforms unfolding solutions by orders of magnitude with small counting quantifiers. Experiments concerning realistic workloads show up to 76% energy reduction and 58% area reduction in comparison to traditional in-memory NFA processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源