论文标题

本地化不变的基本定理

The Fundamental Theorem of Localizing Invariants

论文作者

Saunier, Victor

论文摘要

我们通过将代数k理论的证据扩展到稳定的$ \ infty $ - 类别的领域,来证明对Verdier-locatier jear的基础定理的概括。该公式对于Karoubi-localization函子,verdier-locatier的不变式的函数的表现要好得多。这种一般的基本定理专门针对非共同的K理论,拓扑Hochschild同源性和拓扑循环同源性以及任意环光谱的连接K理论,并概括了代数的几个已知公式,并将代数K理论概述了普通环或普通环和$ $ $ \ \ \ \ \ \ \ shembb的连接。

We prove a generalization of the fundamental theorem of algebraic K-theory for Verdier-localizing functors by extending the proof for algebraic K-theory of spaces to the realm of stable $\infty$-categories. The formula behaves much better for Karoubi-localizing functors, the Verdier-localizing invariants which are additionally invariant under idempotent completion. This general fundamental theorem specializes to new formulas in the context of non-connective K-theory, topological Hochschild homology and topological cyclic homology as well as connective K-theory of arbitrary ring spectra, and generalizes several known formulas for algebraic K-theory of spaces or connective K-theory of ordinary rings, schemes and $\mathbb{S}$-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源