论文标题
高度偏心行星HD 80606 B的气候和组成变化 - 一氧化碳和元素硫的升高和下降
The Climate and Compositional Variation of the Highly Eccentric Planet HD 80606 b -- the rise and fall of carbon monoxide and elemental sulfur
论文作者
论文摘要
汽油巨头HD 80606 B具有高度偏心的轨道(E $ \ sim $ 0.93)。由于恒星辐射的快速变化引起的变化提供了一个独特的机会,可以探测物理和化学时间尺度,并研究气候动力学与大气化学之间的相互作用。在这项工作中,我们提出了研究大气反应以及HD 80606 b的物理和化学机制的综合模型。我们首先运行三维一般循环模型(GCM),以建立大气热和动力学结构,用于不同的大气金属和内部热量。然后,基于GCM输出,我们采用了1D时间依赖的光化学模型来研究沿偏心轨道的组成变化。 HD 80606 B的循环模式的过渡与以前的工作中的动力学制度相匹配。我们的光化学模型表明,有效的垂直混合会导致主要碳和氮物种的深度淬灭水平,并且在整个偏心轨道中不会改变淬火行为。取而代之的是,光解是时间依赖化学的主要驱动力。尽管Ch $ _4 $在大多数轨道上都在CO上占主导地位,但在所有金属和内部加热案例确认了Periastron后,[CO]/[CH $ _4 $}] $> 1 $ 1的瞬态状态。即将到来的JWST周期1 GO计划将能够跟踪此实时CH $ _4 $ - CO转换并推断化学时间尺度。此外,突然加热和光化学强迫发起的硫种类均表现出短期和长期循环,为检测系外行星上的硫开放了一个有趣的途径。
The gas giant HD 80606 b has a highly eccentric orbit (e $\sim$ 0.93). The variation due to the rapid shift of stellar irradiation provides a unique opportunity to probe the physical and chemical timescales and to study the interplay between climate dynamics and atmospheric chemistry. In this work, we present integrated models to study the atmospheric responses and the underlying physical and chemical mechanisms of HD 80606 b. We first run three-dimensional general circulation models (GCMs) to establish the atmospheric thermal and dynamical structures for different atmospheric metallicities and internal heat. Based on the GCM output, we then adopted a 1D time-dependent photochemical model to investigate the compositional variation along the eccentric orbit. The transition of the circulation patterns of HD 80606 b matched the dynamics regimes in previous works. Our photochemical models show that efficient vertical mixing leads to deep quench levels of the major carbon and nitrogen species and the quenching behavior does not change throughout the eccentric orbit. Instead, photolysis is the main driver of the time-dependent chemistry. While CH$_4$ dominates over CO through most of the orbits, a transient state of [CO]/[CH$_4$}] $>$ 1 after periastron is confirmed for all metallicity and internal heat cases. The upcoming JWST Cycle 1 GO program will be able to track this real-time CH$_4$--CO conversion and infer the chemical timescale. Furthermore, sulfur species initiated by sudden heating and photochemical forcing exhibit both short-term and long-term cycles, opening an interesting avenue for detecting sulfur on exoplanets.